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High-throughput sequencing datasets are usually deposited in public repositories, e.g. the European Nucleotide Archive, to ensure
reproducibility. As the amount of data has reached petabyte scale, repositories do not allow to perform online sequence searches; yet
such a feature would be highly useful to investigators. Towards this goal, in the last few years several computational approaches have
been introduced to index and query large collections of datasets. Here we propose an accessible survey of these approaches, which
are generally based on representing datasets as sets of k-mers. We review their properties, introduce a classification, and present
their general intuition. We summarize their performance and highlight their current strengths and limitations.
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INTRODUCTION

Over the past decade the cost of sequencing has decreased dramatically, making the generation of sequence data more acces-
sible. This has led to increasingly ambitious sequencing projects. For example, the 1,000 Genomes Project, which began in
2008 and completed in 2012 (Clarke et al., 2012), led to the 100,000 Genomes Project, which began in 2014 and completed
in 2018 (Turnbull et al., 2018). There are dozens of other large-scale sequencing projects completed or underway, including
GEUVADIS (Lappalainen et al., 2013), GenomeTrakr (Timme et al., 2018), and MetaSub (The MetaSUB International Con-
sortium, 2016). An overwhelming amount of public data is now available at EBI’s European Nucleotide Archive (ENA) (Cook
et al., 2018) and NCBI’s Sequence Read Archive (SRA) (Leinonen et al., 2010). The possibility of analyzing these collections
of datasets, alone or in combination, creates vast opportunities for scientific discovery, exceeding the capabilities of traditional
laboratory experiments. For this reason, there has been a substantial amount of work in developing methods to store and
compress collections of high-throughput sequencing datasets in a manner that supports various queries.

In this paper, we use the term dataset to refer to a set of reads resulting from sequencing an individual sample (e.g., DNA-seq,
or RNA-seq, or metagenome sequencing). Sequencing is routinely performed not only on a single sample but on a collection of
samples, resulting in a collection of datasets. For instance, 100,000 human genomes were sequenced for the 100,000 Genome
Project and over 300,000 bacterial strains were sequenced for GenomeTrakr. One basic query that is fundamental to many
different types of analyses of such collections of datasets can be formulated as follows: given a sequence, identify all datasets
in which this sequence is found. For example, consider the problem of finding a RNA transcript within a collection of RNA-seq
datasets. Similarly, we can ask to find which datasets contain a specific DNA sequence, such as a gene or a non-coding element,
in a collection of bacterial strain genomes. In this paper, we present an overview of recent bioinformatics methods (Figure 1)
created to handle these types of queries.

Given the size of many collections and datasets, several different paradigms for storing them so that they can be efficiently
queried have been developed — many of which continue to be extended and explored. One paradigm is to store and index datasets
as sets of k-length substrings, which are referred to as k-mers. We will refer to collections of datasets as sets of k-mer sets. The
methods that use this paradigm build an index of all k-mer sets, and support the basic query described above by splitting the
query sequence into k-mers and determining their presence or absence in the index.

As we will discuss in this survey, this paradigm has proven to be useful in several ways. First, sets of k-mers are a more concise
representation of the set of sequences of the samples, as they abstract some of the redundancy inherent in high sequencing
coverage. Second, genetic variation and sequencing errors can be dealt with in a more efficient, albeit less accurate way
than using sequence alignment. Instead of performing inexact pattern matching, as aligners do, k-mer based methods can
simply examine the fraction of matching k-mers within the query sequence. Since their initial development, k-mer based
analysis approaches have been widely-adopted in the bioinformatics community due to their efficiency and ability to accurately
summarize and compare large datasets. Hence, the methods we describe in this survey were imperative to a large number of
biological analyses; from elucidating the evolutionary dynamics between substrains of Staphylococcus aureus (Young et al.,
2012) to identifying of recombination hotspots in bird species (Singhal et al., 2015) or enabling the search of over 400,000 viral
and bacterial species (Bradley et al., 2019b).




Even though k-mer based methods have been popular, there do exist some trade-offs. More specifically, storing data using a
k-mer index comes with some loss of information since it only gives information for each constituent k-mer of a sequence —
rather than about the entire sequence. Hence, in most cases a k-mer index does not provide exact answers for queries of longer
sequences (e.g., whole transcript or entire gene) but instead provides a reasonable approximation.

Data structures for indexing a set of k-mers have been studied in depth (Chikhi et al., 2019). Here, we consider the problem
of storing a set of k-mer sets. A naive approach would be to use such an index separately for each k-mer set in the collection.
However, a key aspect is that sequencing experiments that are analyzed collectively typically share a large fraction of k-mers.
Therefore, significant space savings can be achieved by the identification and clever storage of this redundant information.
Here, we focus on the methods underlying the different building blocks of sets of k-mer sets structures. We review the different
properties, the types of queries, and the computational performance that they offer. We highlight similarities of methods based
on commonalities between building blocks where it is appropriate.

BIOLOGICAL APPLICATIONS

RNA-seq studies. Transcriptomics was one of the first areas of application of the reviewed methods. Solomon and Kings-
ford (Solomon and Kingsford, 2016) gathered more than 2,500 samples of human RNA-seq, consisting of blood, brain, and
breast tissue samples from SRA. This led to the possibility of identifying conditions which express isoforms by associating
transcripts to tissues. Similarly to tissue-specific associations, one can envision the numerous benefits of comparing patient
cohorts in order to understand differences in pathologies or impact of medication. For instance, using RNA-seq for func-
tional alterations profiling has become more frequent in cancer research (Byron et al., 2016). Thus, vast programs such as
The Cancer Genome Atlas (TCGA) (Tomczak et al., 2015), provide RNA-seq data from a variety of cancer types. Authors of
SeqOthello (Yu et al., 2018) showed how to investigate gene-fusion using a set of k-mer sets by first creating an index of all
tumor samples from the TCGA. Then they considered documented fusion events and their corresponding k-mer signatures, and
screened the index to detect these signatures. They confirmed some fusions and reported some novel ones. Fusion transcripts
provide interesting targets for cancer immunotherapies since they are prone to exhibit tumor-specific markers.
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Fig. 1. Timeline, main relationships and application highlights for the methods covered in this survey.

One of the data structures covered in this survey, the colored de Bruijn graph, has also been used for rapid, alignment-free
quantification of RNA-seq data. Tools such as Sailfish (Patro et al., 2014), Salmon (Patro et al., 2017) and kallisto (Bray et al.,
2016) rely on a colored de Bruijn graph (implemented using a hash table) to represent and quantify sets of transcripts per genes.

Microbial genomics. Cortex (Igbal et al., 2012), which introduced the concept of colored de Bruijn graph, was used to study
the host diversity and dynamics of Staphylococcus aureus substrains using whole-genome sequencing (Young et al., 2012).
Then, several papers demonstrated how sets of k-mer sets could be used to mine and analyze collections of microbial samples
or genomes, whether they be strains of the same genera (e.g., 16,000 strain of Salmonella) using VARI-Merge (Muggli et al.,
2019), microbiomes (e.g., 286,997 genomes from the human microbiome), or more extensive microbial data (e.g., 469,654
bacterial, viral and parasitic datasets from the ENA) using BIGSI (Bradley et al., 2019a). For example, GenomeTrakr (Timme
et al., 2018) was developed to coordinate international efforts in sequencing whole genomes of foodborne pathogens. Indexing
and querying this and other databases could lead to improved surveillance of pathogenic bacteria, and thus, elucidate the
effectiveness of interventions that attempt to control them.

Subsequently, k-mer indices have been used to follow the spread of antimicrobial resistance (AMR) genes and plasmids across
bacterial populations. The BIGSI authors also searched for plasmid sequences bearing AMR and initiated a study in an index
containing a variety of microbial genomes. They identified some of these plasmids spread across different genera. Other AMR,
such as SNPs associated with fluoroquine resistance, were studied across 100,000 Salmonella genomes with BiFrost (Luhmann
et al., 2020).



Lastly, an effort was proposed to build a comprehensive human gut microbiome resource with the help of a set of k-mer set
structure. Cultured genomes and metagenomes assembled from metagenomics data were combined in a BIGSI index to create
the Unified Human Gastrointestinal Genome index (Almeida et al., 2020). This resource aims at exploration and enables
looking for contigs sequences, genes, or genetic variants.

Genome dynamics. In a study of fine-scale recombination landscape in birds, Cortex was used to de novo call variants in
zebra finch raw datasets, bypassing the low-quality state of current genome resources (Singhal et al., 2015). Recently, a novel
phylogeny approach was introduced by building a colored de Bruijn graph (Wittler, 2020) (using BiFrost) on a set of genomes
(assembled or reads), and traverses the structure to extract phylogenetic signal. This approach bypasses the usual multiple
genome alignment step.

As an aside, tools like Mash (Ondov et al., 2016) perform sketching of datasets, i.e. construct small sets of short k-mers
that constitute signatures of datasets, in order to compute ecological distances between datasets. Since sketching uses specific
techniques that do not rely on the entire k-mer sets (see a related review (Margais et al., 2019)), we consider them outside the
scope of this study.

Finally, beyond these applications, other topics are starting to be explored: integrated variant calling across large-scale gene,
plasmid and transposon search (Blackwell et al., 2019, Bradley et al., 2019a, Miller et al., 2020), bacterial pan-genome index-
ation (Muggli et al., 2019), and gene fusion and pan-cancer analysis (Yu et al., 2018).

QUERY MODEL

Here, we describe the types of queries that are supported by the surveyed methods.

Let D be a collection of n datasets. Let .S be a nucleic sequence of arbitrary length such as a gene, or a transcript. Note that S
can in principle be as short as a single k-mer, but in practice it is often a sequence longer than k. The aim is to determine the
presence of .S in each dataset of D.

The most elementary type of queries supported by all methods in this survey consists in reporting every dataset D; € D which
contains a query k-mer. It can be naturally extended to a longer query sequence .S by querying each element of the set () of
all k-mers present in S. One can see that if .S is present in a dataset, then every element of () is present as well. However the
converse is not true: k-mers in () may possibly correspond to different sequences within a dataset and S may actually be absent.
Consider the two k-mers ACT and CTG (k = 3) and assume they are present in two different reads within a single dataset. A
query sequence ACTG would then be reported as present in that dataset, regardless of whether the sequence is truly found as
part of a single read. Despite this potential shortcoming, this is widely considered to be a reasonable approximation, due to k
being long enough to make such false positive events unlikely.

In a seminal work, Solomon and Kingsford (Solomon and Kingsford, 2016) proposed to report every dataset D; € D in which a
proportion of at least § k-mers of @ appear, i.e. |D; NQ|/|Q| > 6. Here 0 can be seen as a stringency parameter for the search.
This query model is motivated by events such as sequencing errors and variants, which reduce the number of common k-mers
between a query and a target. Thus, it is interesting and often necessary to report when only a fraction of the k-mers from a
query sequence are present a dataset. Typically 6 is set between 0.7 and 0.9 (Solomon and Kingsford, 2016). Also, the typical
k-mer size range seen in applications is 21-31.

BUILDING BLOCKS

We view the storage of a set of k-mer sets as having four possible components. These components are: the underlying data
structure used to represent a single set, the strategy used to aggregate k-mers across different sets, the data structure used to
store this aggregation, and the compression strategy used. See Figure 2 for an illustration of this view. Most of the novelty in
the methods comes in the aggregation strategy and in the data structure used to support it. The other two components are used
more as building blocks. In this section, we will cover these two building blocks.

k-mer set data structures. A set of k-mers is a collection of k-mers that are de-duplicated and unordered. It will be enough
to consider them as black boxes that support all or a subset of the following operations:

* membership, i.e., testing whether a k-mer is in the set;

« insertion and/or deletion of a k-mer.

However, methods to represent k-mer sets are not all equivalent in terms of features and performance. We briefly review their
main characteristics in the rest of this section but refer the reader to the recent survey by Chikhi et al. (Chikhi et al., 2019) for
further details.

Most methods rely on bit vectors to store the presence or absence of k-mers in datasets. A bit vector is an array of bits, e.g.,
00101 represents a bit vector of length 5. A 0 is used to indicate that the k-mer is absent, and a 1 indicates that it is present. A



Hashing, hash functions. Mathematical functions that are used to associate elements (e.g. k-mers) to numbers (e.g.
positions in an array).

Bloom filters. Bit vectors that record the presence or absence of elements within a set, with some approximation, using
hashing.

Counting Quotient filters (CQFs). Similar in nature to Bloom filters but differ by their hashing strategy. CQFs support
membership queries of elements in a set, and also counting elements in a multi-set.

Minimal perfect hash functions (MPHFs). Functions that associate a fixed set of elements to the range of consecutive
integers from O to the number of elements, in a highly space-efficient way.

See Supplemental Box S1 for detailed illustrations of BF, CQF and a hashing method inspired by MPHF techniques
called Othello.

Burrows Wheeler transform (BWT). A text transformation algorithm. Given an arbitrary text, such as a DNA sequence,
BWT rearranges it in a way that enhances its compression and permits indexing. The transformation is reversible,
allowing the text to be efficiently recovered.

Graph definitions

A graph (see (a) in figure below) is a pair of two sets V' and E. Elements of V' are nodes (in blue), and elements of E
are pairs of related nodes called edges (in orange and red).

A path in a graph is a sequence of edges that connects a sequence of distinct nodes (the example shows a path drawn
between nodes 1,2,3,4 through red edges).

A tree ((b) in figure below) is a particular graph in which any two nodes are connected by exactly one path. A forest is a
disjoint union of trees ((c) in figure below). A subtree (circled in grey in (b)) is a subset G’ and E’ of atree T' = (G, E).
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A trie is a tree that allows to efficiently store and query a set of words. Wavelet tries (Grossi and Ottaviano, 2012) are
designed to store compressed sequences.

A de Bruijn graph (DBG) is a graph where nodes are k-mers and there exists a directed edge from vertex u to v if the
last £ — 1 characters of u are the same as the first £ — 1 characters of v. A compacted de Bruijn graph is a different graph
than the DBG, which however represents the same k-mer information by merging unambiguous paths.

See Supplemental Box S2 for an example of DBG and compacted DBG.




bit vector could be used to record the datasets in which a given k-mer appears, or, alternatively, all the k-mers that are contained
in a given dataset. However, with a growing number of datasets and k-mers, using plain bit vectors is generally too simplistic,
and often compression or other tricks are also incorporated. One example is the Bloom filter (Bloom, 1970), which is a way to
store a set as a bit vector using many fewer bits than the naive approach (see Box 1).

Some methods view a k-mer set as a de Bruijn graph (DBG, see Box 1). These two views, k-mer sets and DBGs, are (in some
sense) equivalent as they intrinsically represent the same information.

Data structures for representing k-mer sets (DBG or not) can further be divided into two categories: membership data structures
and associative data structures. The first category only informs about the presence or absence of k-mers, e.g., as in the case of
a Bloom filter. The second category associates pieces of information to k-mers, akin to how dictionaries link words to their
definitions. Some examples of associative data structures include hash tables and counting quotient filters (CQF) (Almodaresi
et al., 2019, Bender et al., 2012, Pandey et al., 2017) (Box 1).

Some data structures (e.g. CQF, BOSS) can represent sets in an exact way; whereas others (e.g. Bloom filters) represent them
in a probabilistic way, meaning that the structures can return false positives (i.e., meaning that a k-mer is sometimes falsely
reported as present in the set when in fact it is absent). These false positives lead to an over-estimation in the number of k-mers
detected as present in a set. While this is an undesirable effect, it can be partly mitigated — as we will see in Section Background
and method intuition.

The main reason such advanced data structures are considered, instead of those provided in the standard libraries of program-
ming languages, is space efficiency. Bloom filters and CQFs approximately require a byte for each element in the set, i.e., less
than the size of the element itself. Similarly, optimized representations of DBGs (Boucher et al., 2015, Bowe et al., 2012, Chikhi
and Rizk, 2013), which are also representations of k-mer sets, aim for near-optimal space efficiency. Exact and probabilistic
data structures offer a trade-off between space and accuracy. This is a crucial aspect as the volume of data typically exceeds
what can be processed using unoptimized data structures.

Compression. To further optimize space usage, different compression techniques have been applied to sets of k-mer sets.
Bloom filters and bit vectors are amenable to a number of compression techniques because they are represented in bits. They
can be sparse (i.e. when most of the bits are Os) or dense (i.e. when most of the bits are 1s). Compression methods exploit these
properties.

Bit vector compression.  Bit vectors can be efficiently stored using bit-encoding techniques that exploit their sparseness or
redundancy. The most prevalent of the methods in this survey are RRR (Raman et al., 2002) or Elias-Fano (EF) (Elias, 1974,
Fano, 1971, Ottaviano and Venturini, 2014). The principle behind these is to find runs of 0’s and to encode them in a more
efficient manner, reducing the size of the original vectors. Other techniques such as Roaring bitmaps (Lemire et al., 2016)
adjust different strategies to sub-parts of the vectors. Wavelet trees (Grossi et al., 2003) generalized compression of vectors on
larger alphabets (i.e., not just 0’s and 1’s but e.g. a’s, b’s, c’s, etc). More advanced techniques deriving from the same concept
were also proposed specifically for sets of k-mer sets (Karasikov et al., 2019).

Delta-based encoding. When two sets share many elements, it may be more advantageous to store only one along with the
differences with the other. For instance, rather than storing two (possibly compressed) bit vectors, one can only store the first
bit vector explicitly along with a list of positions that need to be inverted to obtain the second vector.

This list of positions can itself be encoded as a bit vector, with a bit set to one if and only if the bit is at the location of a
difference between the two vectors. This bit vector is expected to be more sparse than the original encoding, allowing better
compression. Such a scheme is usually called “delta-based encoding” in the literature.

Hybrid techniques. In hybrid approaches, a collection of bit vectors is split into different buckets, where each bucket contains
bit vectors with similar features. Compression within each bucket is performed using a suitable technique selected from a pool
of feature-specific ones. An illustration of these techniques is provided in Supplemental Box S4.

COLOR-AGGREGATIVE METHODS

The methods that we will survey are split into two categories. Color-aggregative methods index the union set of k-mers, which
is the joint set of all k-mers that appear in all the datasets. Instead, k-mer aggregative methods index each dataset separately,
then build an aggregation data structure to distribute queries. A few methods that escape this categorization will be presented
separately.

Color-aggregative methods gather and index the union set of k-mers, then associate information to each k-mer to record its
dataset(s) of origin. A practical advantage of color-aggregative methods is that a k-mer that appears in many samples will
appear only once in the union set. This greatly reduces redundancy in the representation of k-mers, but introduces the need to
store additional color information. In this subsection, we give a brief background and history of the methods that fall into this
category.



Box 2. Representation of colors in color-aggregative methods
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A color matrix represents the presence of n k-mers across ¢ datasets (in the above figure, n = 5, ¢ = 3). Different
schemes have been introduced to encode such matrices. In particular, a color class is a set of colors that is common to
one or more k-mers. In other words, in the color matrix there may be identical rows, then the corresponding k-mers
belong to the same color class. One may "de-duplicate" the 7 rows of the color matrix into m < n color classes (here,
m = 4). Then, color class identifiers are introduced as intermediaries between k-mers and color classes. (To go further,
frequently used color classes can be referenced using fewer bits by using small integers as identifiers).

compression

Color-aggregative methods are generally composed of three parts. First, a set of all k-mers, built using either a DBG
or an ad-hoc representation. Second, a correspondence between k-mers and colors in the form of a color matrix (left,
"color strategy’ row), color classes (middle), or several color matrices (right). Finally, k-mer sets and/or colors may be
further compressed. In the two first columns’ strategies, compression is based on one of the techniques from section
Compression. In the third column, different techniques may be used for different matrices.

Color matrix. A color of a given k-mer is frequently used in the literature to identify a dataset containing the k-mer, assuming
each dataset is given a unique color. A color set is the set of colors associated with a k-mer. It is convenient to represent a
color set using a bit vector. Here, fixing an ordering of the datasets, a 1 at position ¢ in the bit vector indicates the presence of
the k-mer in the i-th dataset, and O its absence. Given n k-mers and c¢ datasets, the color matrix is a n X ¢ matrix of bits which
describe the presence or absence of each k-mer (in the rows) in each dataset (in the columns). For an example, see Box 2.

Background. The first color-aggregative method was proposed by Igbal et al. (Igbal et al., 2012) in the Cortex software. It
implements a relatively straightforward associative data structure that maps k-mers to colors. A colored DBG is a DBG of the
union set of k-mers, where each vertex is labelled with the color set of the corresponding k-mer. Igbal et al. used a colored DBG
built on a set of individuals from a population to detect SNPs and other short variants; such events are reflected in the graph by
a pair of short paths that share their start and end nodes. This enabled to detect genetic variation in a population without the use
of a reference genome. Cortex consumes an inordinate amount of RAM when the total number of distinct k-mers exceeds tens
of billions. This main drawback motivated more recent works improving the efficiency of the colored DBG.

We note that later in this survey, we will not restrain the term colored DBG to the original work from Igbal et al., but will extend
it to any explicit DBG implementation that associates color sets to k-mers. Colored DBGs are only implemented in the class
of color-aggregative methods. Conversely, as we will see later, some color-aggregative methods do not implement a colored
DBG.

Later methods. The first color-aggregative methods that improved upon the memory- and time- efficiency of Cortex were
Bloom filter trie (BFT) (Holley et al., 2016) and Vari (Muggli et al., 2017). These methods achieved a significant reduction
in representation size via different strategies. After the introduction of these methods, subsequent improvements were made
with the development of Rainbowfish (Almodaresi et al., 2017), Multi BRWT (Karasikov et al., 2019), Mantis (Pandey et al.,
2018), SeqOthello (Yu et al., 2018), Mantis+MST (Almodaresi et al., 2019), and Vari-Merge (Muggli et al., 2019). Most of
these recent techniques rely on a more careful encoding of the colors of each k-mer, which takes advantage of redundancy in
the data.

A summary of the main features of color-aggregative methods is presented in Table 1. Their methodological strategies are
presented in more details in Supplemental Box S6.



Methods based on a color matrix. The representation of the DBG used by Vari (Muggli et al., 2017) is a BWT implementa-
tion referred to as BOSS (Boucher et al., 2015), While we will not go into the technical details here (see Supplemental files and
Supplemental Box S3 for more information), it is sufficient to see BOSS as a rearrangement of the original data that enables
indexing and compression. In order to add color information in Vari, a compressed color matrix is constructed row-by-row.
Later, Vari-Merge (Muggli et al., 2019) was introduced to construct colored DBGs for very large datasets, which can also
be updated with new data. Two other methods, Pufferfish (Almodaresi et al., 2018) and BLight (Marchet et al., 2020b)
put emphasis on the k-mer indexing technique in order to efficiently store DBGs in memory, and use a simple color matrix
to represent the colored DBG. It is worth noting that BLight shares similarities with Kraken (Wood and Salzberg, 2014), a
taxonomic classifier. Indeed, it can be seen as a colored de Bruijn graph of k-mers with labels to their genome of origin.

Methods based on color classes. In many applications, such as human RNA-seq indexing (Solomon and Kingsford, 2016),
it is expected that many datasets share a large number of k-mers. This redundancy can be exploited to reduce the color encoding
size, through color classes. When colors are seen as bit vectors, the color classes are defined simply as de-duplicated bit vectors.
Thus two k-mers having the same color sets are associated with a single color class instead of two identical bit vectors (see Box
2). Compression may be achieved by representing the color matrix as a compressed bit vector.

Bloom Filter Trie (Holley et al., 2016) (BFT) uses a different approach to storing the DBG than Vari but also aims at repre-
senting a DBG. BFT introduced the idea of color classes, and a more detailed description of its inner workings is provided in
Supplemental Box S5. Rainbowfish (Almodaresi et al., 2017) mixes ideas from Vari and BFT. Mantis (Pandey et al., 2018)
introduces another strategy (the CQF, see Box 1) for storing the DBG in a space-efficient manner. Initially, CQFs were intro-
duced to record counts associated with k-mers but in Mantis, the structure instead stores color sets. Mantis+MST (Almodaresi
etal., 2019), an extension of Mantis, takes advantage of the insight that many color classes are frequently similar to each other,
since many k-mers occur in relatively similar sets of sequences. Thus it proposes a more efficient encoding of colors.

Methods based on several matrices. SeqOthello (Yu et al., 2018) does not explicitly represent a DBG but rather stores a
probabilistic set of k-mers using a hashing method inspired by MPHF techniques called Othello (see Supplemental Box S1).
SeqOthello proposes to group similar color profiles, then uses a suitable compression technique depending on the sparsity of
each group. It may wrongly associate a dataset to an alien k-mer, instead of correctly returning that such k-mer belongs to no
dataset. For a query that consists of many k-mers (such as genes or transcripts) errors can be mitigated because false positives
are unlikely to all point to the same dataset(s). This property will also be used in k-mer aggregative structures, and will be
further discussed in Section Background and method intuition.

Recently, another construction strategy for color-aggregation was proposed in Bifrost (Holley and Melsted, 2019). As in BLight
and Pufferfish, BiFrost uses a compacted DBG (introduced in e.g. (Chikhi et al., 2016, Minkin et al., 2016), see Supplemental
Box S2), to more efficiently represent the sequences than a set of individual k-mers. In addition, we note these methods
are similar to Mantis and SeqOthello in terms of the underlying hash-based strategies, and the differences are detailed in
Supplemental Box S6.

Other methods. Some techniques evade the above categorization and have focused on specific aspects of color-aggregative
methods memory optimization. The growing number of colors (or classes) motivated works to further reduce space through
lossy compression. In Metannot (Mustafa et al., 2018) and Multi-BRWT (Karasikov et al., 2019) the main contribution is
not the data structure used to store the graph, but the one used to store colors. Metannot explores two strategies for color
compression. One of them is probabilistic: in order to reduce false positives, color sets queries are corrected by taking the
intersection with other color sets from neighboring k-mers in the DBG. Multi-BRWT improves upon standard bit-encoding
representation (such as RRR, EF).

Colored DBGs have been used to perform RNA-seq quantification (Bray et al., 2016, Patro et al., 2017, 2014), by associating
colors to individual genes as opposed to datasets. Yet such methods still require a pseudo-alignment step to recover abundance
information from the reads. Recently, REINDEER (Marchet et al., 2020a) proposed a color-aggregative index which also
records abundance, bypassing the need to align reads in order to recover abundances. It relies on BLight, to which it adds novel
features in indexing and a more advanced color matrix with color classes and compression.

Queries. Given that current implementations use k-mers that fit within (extended) computer words (~ 21 to 63), the query
time bottleneck comes mainly from random memory accesses, neglecting the time taken to calculate and hash the k-mers.
Hash-based methods perform very fast color queries: retrieving information relative to a single k-mer requires only a constant
number of memory accesses. The methods whose underlying DBG is BOSS (e.g., Vari, Rainbowfish, Vari-Merge) are expected
to show a lower throughput. Indeed, the retrieval of a k-mer requires in the order of £ memory accesses.

K-MER AGGREGATIVE METHODS

We now turn to a completely different class of data structures. Unlike previously mentioned methods, k-mer aggregative
methods do not pool k-mers from all datasets in order to build an index. Rather, they first process datasets separately, and then



] Method | Description | Nav. [ Add | Exact | Remarks
VARI A BWT-based index on k-mers interfaced with a color Y N Y Supports short variant
matrix compressed with RRR discovery
VARI-Merge A divide-and-conquer approach to building VARI on Y Y Y
large datasets
BFT A tree that records k-mers, using Bloom filters, and their Y N Y First scalable color-
compressed color classes aggregative method
Rainbowfish Similar to VARI for the k-mers, similar to BFT for the Y N Y
colors
Mantis A tweaked CQF that records k-mers and color classes, Y N Y/N | Canswitchto
which are compressed with RRR E:V)ZTI’)TCSCHC queries to
Mantis+MST Similar to Mantis with more efficient delta-encoding
color compression
SeqOthello MPHF (Othello) that maps k-mers to their color sets N N N Most memory
grouped and compressed by similarity using hybrid bit- efficient ~ among
vector compression COlor'a%gregauve
methods
Pufferfish, BLight | A MPHF-based hash table associating k-mers (in a DBG) N N Y
to colors
BiFrost A hash table associating k-mers to several color matri- Y Y Y
ces (similarly to Mantis+MST) with adapted compres-
sion strategy
Metannot A hash table storing k-mers and nearly optimal com- N Y Y Can delete datasets
pressed colors with wavelet tries and RRR
Multi-BRWT A hash table storing k-mers with a color matrix com- N Y Y Can delete datasets
pressed in both dimensions simultaneously
REINDEER A MPHF-based hash table associating k-mers to counts N N Y Only method that al-
lows to store counts

Table 1. Summary of the existing color-aggregative methods and some of their features. nav.: indicates if it is possible to navigate in the DBG (ie. going from one k-mer
to the following ones and conversely). Such a navigation allows for instance to perform variant-calling. We note that these two aspects should be technically possible in
all colored DBG tools. add: indicates if new datasets can be added to the index. Although it is conceptually possible that new data can be added to Vari, Rainbowfish (by
rebuilding) and Mantis, this feature is currently not implemented. exact: indicates if the index provides exact results (Y) or if there may have false positives (N).



Method Description | Add | Exact | PRQ | Remarks

SBT A tree of RRR-compressed BFs with each dataset stored N N Y
in a leaf
SSBT A tree similar to SBT but with more fine-grained BFs. N* N Y Redundancy removal
AllSomeSBT | A tree similar to SSBT but with a hierarchical clustering | N* N Y compared to SBT

of datasets to save space and query/construction time

HowDeSBT | Similar to AllSomeSBT but with additional BF optimiza- N N Y Small index
tions
BIGSI A matrix of BFs, where each column corresponds to a Y N N
dataset
COBS Similar to BIGSI with BFs of variable lengths to adapt N N Y Fast construction
for varying dataset sizes
RAMBO A matrix of BFs, where each BF corresponds to an union Y N N

of several datasets

Table 2. Summary of the existing k-mer aggregative methods and some of their features. Add: indicates if new datasets can be added to the index. * These methods’
papers propose a dataset addition algorithm though it is not implemented. exact: indicates if the index provides exact results (Y) or if there may have false positives (N). PRQ,
stands for Partial RAM query: indicates if the query can be performed by loading only a small part of the index in RAM. This is much less space-consuming but potentially less
time-efficient. Comparatively, all color-aggregative methods need to load the whole index in memory when querying. However, contrarily to some color-aggregative methods,
no k-mer aggregative method offer navigation operations.

aggregate them in different ways. A summary of these methods’ features appears in Table 2.

Background and method intuition. . All the k-mer-aggregative methods surveyed work by storing the k-mers of each dataset
in a separate Bloom filter (BF), i.e. using one BF per dataset. A BF is a probabilistic data structure that sometimes returns
false positives; i.e. the BF may report that a k-mer belongs to a certain dataset when it really does not. In the query model
that we defined on Section Query model, the 6 parameter allows to partially mitigate this problem by considering the results
of multiple k-mer queries. Indeed, the false positive rate for a sequence decreases exponentially with the number of k-mer
queries (Bingmann et al., 2019, Solomon and Kingsford, 2016). For the values of 6 used in practice, the false positive rate of
an individual BF can be set as high as 50% without degradation of query performance on sequences that are much longer than
k (Solomon and Kingsford, 2016).

Prior to construction, unlike color-aggregative methods, most k-mer-aggregative methods (except COBS) need to know in
advance how large is the largest dataset, in terms of the number of distinct k-mers, to ensure that BFs are appropriately sized.
The common BF size is chosen according to a desired false positive rate.

k-mer aggregative methods summary.

Sequence Bloom trees (SBTs). These are a family of related techniques detailed across multiple publications (Harris and
Medvedev, 2020, Solomon and Kingsford, 2016, 2018, Sun et al., 2017), adapted to bioinformatics from a previously-known
hierarchical structure of BFs (Bloofi (Crainiceanu and Lemire, 2015)). The tree structure represents a hierarchical clustering
of the datasets, e.g. one obtained using k-mer similarity across datasets. In the original SBT (Solomon and Kingsford, 2016),
each leaf corresponds to an individual dataset and each internal node is a BF that represents all the k-mers of the datasets
descendant from it. Split-Sequence Bloom trees (SSBT, (Solomon and Kingsford, 2018)) and AllISomeSBT (Sun et al., 2017)
simultaneously proposed to instead store two BFs per internal node, each one separately containing the k-mers present in (re-
spectively. absent from) all the descendants. HowDeSBT (Harris and Medvedev, 2020) further improved the space utilization
and provided the first analytical analysis of the running time and memory usage of the various SBT approaches. These recent
improvements (Harris and Medvedev, 2020, Solomon and Kingsford, 2018, Sun et al., 2017) greatly reduced the space and
query time compared to the original SBT (see Supplemental Box S8 for a comparison of SBT flavors).

Matrix strategies. An orthogonal approach was proposed in BIGSI (Bradley et al., 2019a) (Box 3 (b)). As a first approx-
imation, BIGSI can be seen as the concatenation of many BFs, forming a color matrix. The matrix is stored in row-major
order, i.e. row-by-row, so that each row appears as a consecutive block and can be efficiently queried. A closely related work
is presented as a part of DREAM-Yara (Dadi et al., 2018), where BFs are interleaved, in order to efficiently retrieve the same
position of several BFs (see Supplemental Box S8). BIGSI was later improved, speed and memory-wise, by COBS (Bingmann
etal., 2019).

Detailed examples can be found in Supplemental Box S7. RAMBO (Yan et al., 2019) appears at first glance related to BIGSI,
as it is also a matrix of BFs. However, RAMBO is actually closer to SBTs: each BF in the RAMBO matrix represents several
datasets, but not in a hierarchical fashion. More details are provided in the Supplemental files and Supplemental Box S8.



Box 3. Techniques for k-mer aggregation.

Data structures

In k-mer aggregative strategies, Bloom filters representing each of the datasets are organized in either a tree or a matrix
structure. In the example below, there are four datasets (red, blue, green, and yellow), and the grey rectangles represent
Bloom filters.

(a) Tree strategy A search tree is constructed, where each leaf is a dataset and internal nodes represent groups of
datasets. Datasets with similar BFs can be clustered to reside in the same subtree. In the original SBT approach (Solomon
and Kingsford, 2016), each node stores exactly one BF, containing all the k-mers present in the datasets of its subtree.
For a leaf, this is simply the k-mers in the corresponding dataset. Later versions of SBTs (Harris and Medvedev, 2020,
Solomon and Kingsford, 2018, Sun et al., 2017) store more sophisticated data at each node, though they still rely on
BFs.

(b) Matrix strategy The BFs from all the datasets are concatenated column-wise to obtain a matrix similar to a color
matrix. A row in the matrix roughly corresponds to a k-mer (more precisely, to the position indicated by the hash
value of a k-mer). In the original BIGSI approach (Bradley et al., 2019a), all BFs have exactly the same size. In
COBS (Bingmann et al., 2019), datasets of comparable cardinality are grouped into bins, leading to a collection of
matrices of different sizes.

(@ / (b)

Queries
Consider an example query composed of 3 k-mers with a threshold 6 = % where, for simplicity, each k-mer corresponds
to a single location in the BF.

(a) Tree strategy Conceptually, one starts at the root node and then explores down the tree, always checking all the
children of a node before moving to another node (breadth-first strategy). A counter of k-mers that have been determined
to be present or absent is maintained for the query as it propagates down the tree. If either of the counters exceeds a
certain threshold, the search does not propagate further down the subtree of that node. E.g., in panel (a) below, black
bars in the BF represent the presence of 3 queried k-mers. Considering that § = % of the k-mers should be present, the
query is pruned at the yellow/green nodes since not enough present k-mers are found. Only the red dataset is returned
as containing the query.

(b) Matrix Strategy In BIGSI, each k-mer corresponds to a single row in the matrix which is then extracted, and
summed column by column to obtain a vector where each element contains the number of k-mers occurring in the
corresponding dataset. Again in panel (b) below, black bars in the BF represent the presence of 3 queried k-mers. The
red dataset will be the only one returned as containing the query.

(@) (b)

| °
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Queries. In SBTs, a query containing several k-mers () starts at the root and propagates down the tree. At any node, the
information stored at that node is used to determine which k-mers of () are determined in all descendants of the node. Depending
on the SBT flavor, a determined k-mer may be for sure present, or for sure absent, in all descendants. The k-mers which are
determined are discarded from @ as the query propagates down the tree (see Box 3). When enough k-mers become determined,
the search can be pruned, i.e. not carried further down the tree.

In matrix approaches, a k-mer query extracts a bit vector indicating its presence across D (see Box 3). For a set of k-mers @,
the bit vector for each k-mer in @ is constructed and bitwise operations on these vectors are performed to answer the whole

query.
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Fig. 2. Overview of set of k-mer sets building blocks. We classified strategies in color-aggregative approaches, and k-mer aggregative approaches (second column). The
top row of the figure indicates the general categories of components of each methods: the type of k-mer set; the way multiple sets are combined together; and an optional
compression scheme. Each next row describes one of the surveyed methods. The cells in this figure are methodological choice, potentially common across methods, hence
many cells are joined.

Other schemes. Other unpublished tools have considered different techniques for storings and indexing sets of k-mer sets.
kamix (https://github.com/jaudoux/kamix) uses SAMtools’s BGZF library (block-compressed gzip) to store and
index a k-mer matrix. From the same author, kad (https://github.com/jaudoux/kad) uses a RocksDB database to
store a list of k-mers and counts.

BEETL (Cox et al., 2012) is a technique that stores inside a BWT all sequences (i.e., not k-mers, but the original data) from a
sequencing dataset. BEETL was able to compress and index 135 GB of raw sequencing data into a 8.2 GB space (on disk for
storage, or in memory for queries). A variant, BEETL-fastq (Janin et al., 2014), also enabled to perform efficient sequences
searches and was also applied to the representation of multiple datasets.

Population BWT (Dolle et al., 2017) is also a scheme based on BWT geared towards the indexing of thousands of raw se-
quencing datasets. The BWT allows to query k-mers of any length and additionally gives access to the position of each k-mer
occurrence within the original reads (note however that reads need to be error-corrected).

Recently, compressed structures able to compress full-text were proposed as proofs of concept for indexing and querying
collections of biological datasets (Cobas et al., 2020) for presence/absence and abundance. However, at the time of writing,
such indexes have been tested on a few dozens of close bacterial strains, not yet on raw reads data.

PERFORMANCES OVERVIEW

Index construction on human RNA-seq samples. Indexing datasets of a similar type, such as RNA-seq samples from the
same species, was one of the first applications proposed in the literature of sets of k-mer sets, and remains one of the main
benchmarks for these tools. Table 3, based on Supplemental Tables S1 and S2, reports the performance of most of the recent
tools on a collection of human RNA-seq datasets (2,652 RNA-seqs from the original SBT article (https://www.cs.cmu.
edu/~ckingsf/software/bloomtree/srr—1ist.txt). This table was constructed by gathering results from three
recent articles (Bradley et al., 2019a, Harris and Medvedev, 2020, Yu et al., 2018). As the articles use different hardware and
slightly different parameters, a direct comparison of the tools is challenging. Instead, Table 3 presents a summary of the best
possible performance that can be currently achieved on the given datasets. Supplemental Table S3 also presents a summary of
methods’ time complexities.

The data processing phase, where the k-mer sets are constructed and initialized, often takes significant time across all methods.
It is usually not presented as a bottleneck since it is viewed that this step can be computed while downloading the samples.
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Data set Data Processing Time (days) Max Ext. Memory (GB) Time (h, wallclock) Peak RAM (GB) Index Size (GB)

Human RNA-seq 2.5 (Harris and Medvedev, 2020) 30 (Harris and Medvedev, 2020) 2 (Yuetal., 2018) 5 (Yuetal., 2018) 15 (Harris and Medvedev, 2020)
(2,652 datasets) (HowDeSBT) (HowDeSBT) (SeqOthello) (SSBT) (HowDeSBT)
Bacterial genomes Not reported Not reported 0.01 (Bingmann et al., 2019) 1.5 (Bingmann et al., 2019) 1.9 (Bingmann et al., 2019)
(1,000 datasets) (COBS) (SSBT) (HowDeSBT)

Table 3. Overview of the best achievable performance in terms of space and time requirements to build indices. The data processing time column refers to the time necessary
to convert the original sequence files to the k-mer set indices (Bloom filters / Othello). The maximum external memory column corresponds to the peak disk usage when
building the index. The time column is the time required to build the set of k-mer sets index (on one processor). The index size column is the final index size.

Regarding query times, each method has used different experimental setups, making comparisons difficult, e.g., using transcript
batches of different sizes (100-10,000). We refer the reader to the experimental benchmark in (Harris and Medvedev, 2020),
which compares the average query times for randomly selected batches, effects of warming the cache, maximum peak memory
for queries. Finally, we note that the information output by a query can vary from one implementation to another and that the
maximum supported value for k-mer size is also implementation dependent.

Indexing bacterial genomes. We now turn to the indexing of large collections of bacterial datasets. Table 3 summarizes
the benchmark published in the COBS article (Bingmann et al., 2019). Methods that were reported to perform the best in the
previous section remain the most efficient, and most recent methods tend to show the best performance. BIGSI, AllSomeSBT,
and COBS queries are fast. We note that COBS construction time is very low (< 1 minute), in part because it has been run using
80 threads. SSBT and COBS also have low RAM consumption. An advantage of HowDeSBT is the small size of the index
on disk. This demonstrates that highly-diverse datasets, in terms of k-mer contents, can also be efficiently stored in variants of
SBTs.

Indexing human genome sequencing data. To the best of our knowledge, only two methods (BEETL-Fastq and Population
BWT) have been applied to the representation of full read information from cohorts of whole human genomes. BEETL-Fastq
represented 6.6 TB of human reads in FASTQ format in 1.7 TB of indexed files. Population BWT managed to index (in a lossy
way) 87 Tbp of data, corresponding to 922 billion reads from the 1,000 Genomes Project. After read correction and trimming,
the authors obtained a set of 53 billion distinct reads (4.9 Tbp) and indexed it with a BWT stored with 464 GB on disk (requiring
561 GB of main memory for query). Metadata (e.g., sample information for each read) was stored in a 4.75 TB database.
Given the apparent difficulty to construct large-scale indices on human sequencing datasets, we conclude that this is not yet a
mature operation. Therefore, we did not provide a detailed comparison with other indexing techniques.

DISCUSSION

General observations can be derived from the comparison we have presented in this survey.

SBT approaches were designed for collections with high k-mer redundancy, such as human RNA-seq. In contrast, BIGSI
and COBS focused on indexing heterogenous k-mer sets, such as k-mers originating from various bacteria. Experiments in
Bingmann ez al. (Bingmann et al., 2019) demonstrated that SBTs like HowDeSBT could also perform well on this type of data.
A trade-off exists between the construction time — in favor of COBS — and index size — in favor of the SBTs. As shown in
the COBS paper, resizing BFs allows to save memory, but the latest SBT flavors also have a lightweight memory footprint
because compressing BFs can achieve a similar effect as resizing. Smaller BFs also increased the false positive rate of COBS
in comparison to other BF-based techniques (Bingmann et al., 2019).

It is also important to note that for many methods queries are approximate, although a number of color-aggregative methods
support exact queries. Some colored DBG implementations (Vari and Vari-Merge) support additional features such as SNP and
short variant discovery and graph traversal. New query types should also be considered. For instance, recording k-mer counts
(with REINDEER) instead of presence or absence is likely to assist gene expression studies.

Color-aggregative methods and BIGSI/COBS seem better suited to query large sequences. Indeed, in these methods, the
bottleneck for a single query is loading the index into memory. Then, the rest of the query consists in hashing k-mers, roughly
in constant time per each k-mer. Henceforward, once the index is loaded in memory, batches of queries or large queries can be
answered very rapidly. Query speeds depend on the method and its implementation. For instance, in some data structures such
as the CQF in Mantis, consecutive k-mers are likely to appear nearby in memory, thus reducing the number of cache misses
during a query. A drawback is that these structures are usually more memory consuming than SBTs. Moreover, in the case of
SBTs, BIGSI, and COBS, large queries allow to mitigate the underlying BF false positive rate. SBTs and COBS do not need to
load the entirety of the index into memory at query time since the query iteratively prunes irrelevant datasets. That is why SBTs
are more suitable for short queries, while for large queries, k-mer look-ups become a bottleneck. For very large queries (e.g.
the k-mers from a whole sequencing experiment), only AllSomeSBT (Sun et al., 2017) has an efficient specialized algorithm.
The type of queries proposed by Solomon and Kingsford (Solomon and Kingsford, 2016), which has been widely adopted across
SBT flavors, relies on the threshold 6 to determine if a sequence matches a dataset. This threshold controls the sensitivity of
matches with respect to sequence identity and sequencing errors. It would benefit from being further explored from a biological
point of view. For instance, a single substitution in a base is covered by k different k-mers. If the indexed sequences differ from



the query on that substitution, these k-mers will not be found in the structure, and if the value of  is too high the match could
be missed.

While there have been extensive empirical benchmarks to compare the performance of the different methods, analytical com-
parisons of their performance has been limited (see (Harris and Medvedev, 2020) for an example, though it is limited to only
SBTs). The difficulty in using worst-case analysis to analyze performance in this case is that the methods are really designed
to exploit the properties of real collections, and worst-case analysis is therefore not helpful. Progress can be made by coming
up with appropriate models to capture the essential properties of real data and analyzing the methods using those models.

We note that there are several issues that lie outside this survey but merit mention — the selection of k£ and the presence of
sequencing errors. The value of & is well-known to control sensitivity and specificity of the methods. Too small of a value of
k decreases the sensitivity and too large of a value of k decreases the specificity. Automatically selecting the best k value was
studied in the context of genome assembly (Chikhi and Medvedev, 2014), but to the best of our knowledge, not yet for indexing
collections of read datasets. An additional related issue to this survey, is the presence or absence of sequencing errors, which
result in k-mers that have a low number of occurrences. To address this issue, some methods (such as Cortex) filter k-mers with
a low frequency by default, whereas others require user intervention.

The data structures surveyed in this paper should be seen as initial attempts from the community toward being able to routinely
query the hundreds of thousands of samples deposited in public repositories (e.g., SRA) or private ones. An essential next
step would be to have user-friendly tools. User friendliness can be seen from different perspectives. First, one may try to cast
more concrete biological questions into simplified k-mer queries that can then be asked to the indices. Second, the results of
queries could be presented in a manner that is more suitable to biologists rather than their current form, consisting mainly of the
output of k-mer queries. For instance, a list of reads contained in the indexed datasets could be output for further investigation.
However, indexing reads is more challenging, and this direction would require new developments for the structures to scale.
Third, special attention given to user interfaces could help broaden the usage of these methods. Web interfaces are challenging
to maintain in the long run (the group maintaining BIGSI proposed one: http://www.bigsi. i0/); thus another solution
could be to provide offline pre-computed indices. This way, users would only download some chunks of interest from the index
for further investigation.
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SUPPLEMENTAL FILES

Supplemental files outline  The Supplemental files are divided in two parts, namely, details on the methods and supplementary
benchmarks. Some explanations will be given in the text below, and we provide concrete examples in Supplementary Boxes
that can be found in the end of the document. First, following the main text’s organization, details on relevant k-mer structures
(hash-based, BWT-based) and compression are given (Supplemental Boxes S1-4). Then, we give more insights about some of
the set of k-mer sets approaches. In particular, we provide a lower-level description of structures/features that did not appear
in the main document. E.g., examples of the BFT and RAMBO structures are given, as well as comparisons between specific
approaches (Supplemental Boxes S5-8). Complexities are outlined in Supplemental Table S3. In the Supplemental Benchmark
section, we provide the full benchmarks (Supplemental Tables S1 and S2) extracted from the different papers that led to Table
3 in the main document.

Details on the methods..

k-mer index data structures..
Bloom filters, CQF and Othello hashing Examples are presented in Supplemental Box S1.
De Bruijn graph and compacted de Bruijn graph  Instances are shown in Supplemental Box S2.

BOSS: BWT-based De Bruijn Graphs The Burrows Wheeler Transform is a text transformation algorithm. It receives a
sequence as input, and rearranges its characters in a way that enhances further compression. The transformation is reversible,
thus the original sequence can be decoded. BOSS rearranges k-mers to represent the De Bruijn graph in a similar way.

Here, we briefly show how the BOSS scheme works. To begin we describe the following simple — but not space-efficient —
representation of a DBG: take each unique (k + 1)-mer, consisting of a vertex concatenated to the label of an outgoing edge, and
sort those (k + 1)-mers according to their first k symbols taken in reverse order. The resulting sorted list contains all nodes and
their adjacent edges sorted such that all outgoing and incoming nodes of a given node can be identified. Thus, it is a working
representation, in that all graph operations can be performed, but is far from space efficient since (k+ 1) symbols need to be
stored for each edge. Next, we show that we can essentially ignore the first £ symbols, which will lead to a substantial reduction
in the total size of the data structure.

First, we make a small alteration to this simple representation by padding the graph to ensure every vertex has an incoming path
made of at least k vertices, as well as an outgoing edge. This maintains the fact that a vertex is defined by its previous k edges.
For example, say k-mer CCATA has no incoming edge; then we add a vertex $CCAT and an edge between $SCCAT and CCATA,
then between $$CCA and SCCAT, and so forth. We let W be the last column of the sorted list of (k + 1)-mers. Next, we flag
some of the edges in the representation with a minus symbol to disambiguate edges incoming into the same vertex — which we
accomplish by adding a minus symbol to the corresponding symbols in W. Hence, W is a vector of symbols from {A, C,
G, T, $, -A, -C, -G, -T, -$}.Next, we add a bit vector L which represents whether an edge is the last edge, in W,
exiting a given vertex. This means that each node will have a sequence of zero-or-more 0-bits followed by a single 1-bit, e.g., if
there is only a single edge outgoing from a node then there is a single 1-bit for that edge. Overall the representation consists of
a vector of symbols (W), a bit vector (L) implemented using a rank/select ? data structure, and finally an array that records the
counts of each character. It may seem surprising but these three vectors provide enough information for representing the DBG
and supporting traversal operations. We refer the reader to the original paper for a detailed discussion. Lastly, we note that this
representation, which is referred to as BOSS, is due to Bowe et al. ? and was extended for storing colors ? (see Supplemental
Box S3 for an example).

Details on compression. To efficiently represent a n. X ¢ color matrix, over n k-mers across ¢ datasets, different schemes have
been proposed. A color class is a set of colors common to one or multiple k-mers. It can also be seen as a bit vector, or
alternatively, a row of the color matrix. Supplemental Box S4 presents examples of the different techniques: the delta-based
encoding used in Mantis+MST (a), the RRR/Elias-Fano coding (b) used e.g. in Mantis and VARI, the lossy compression using
BF from Metannot (c), the BRWT principle (d), and the three strategies used in SeqOthello (e).

Set of k-mer sets details.

Color aggregative methods.  We first show how the different color aggregative methods combine k-mer sets, indexing tech-
niques and color strategies in Supplemental Box S6.

BFT significantly differs from other methods: an example is shown in Supplemental Box S5. In a BFT, k-mers are divided into
a prefix and a suffix part that are recorded in a burst trie. Prefixes are further divided into chunks, which are to be inserted into
the root or inner nodes of the tree. Suffixes are in the leaves. Queries start at the tree root and progress through the path that
spell the query string. In practice, each leaf stores a set of tuples: some k-mer suffixes along with their corresponding color
classes. Bloom filters are also used in the inner nodes, to increase query speed by quickly checking the presence of a chunk.



Tool Data Processing Time (days) Max Ext. Memory (GB) Time (h, wallclock) Peak RAM (GB) Index Size (GB)

SBT 3.5° 300@ 550 25P 200@
AllSomeSBT 3.5¢ 600* 254 35b 1402
SSBT 3.5% 600° 554 50 209
HowDeSBT 2.5@ 309 10@ N/A 159
Mantis 130 1104 20® N/A 30
SeqOthello 3.5b 190° 2b 15b 200
BIGSI N/A N/A N/A N/A 145¢

Supplemental Table S1. Space and time requirements to build human RNA-seq indices. The best result for each column is shown
in green. ¢ refers to the HowDeSBT article, © to the SeqOthello article, € to the BIGSI article, and 4 was obtained through personal
correspondence with R. Patro.

Note that the above description of BFT does not capture the full complexity of the data structure, and should only be used to
build an initial intuition.

k-mer aggregative methods In Supplemental Box S7, we present indexing and query details, in a similar fashion than Box
3 in the main text, but more in depth. We show the index construction and query steps in SBT, BIGSI, and show how COBS
improves on BIGSI’s representation while keeping the core idea.

The false positive rate of a BF is monotonically increasing in m/n, where m is the number of k-mers in the dataset and n is the
number of bits in the BF. BIGSI uses the same size n for all the BFs, thus the false positive rates of the BFs differ depending
on how many k-mers are in the corresponding dataset. COBS avoid this by storing BFs of size adapted to the corresponding
dataset.

Then we illustrate contrasts between the k-mer-aggregative methods in Supplemental Box S8. For the different flavors of
SBTs, different strategies are used to store information in each node. Supplemental Box S8 shows the improvements in bit-
vector representation first brought by SSBT/AllISomeSBT, then by HowDeSBT. In a second Figure, BIGSI, Dream Yara and
RAMBO strategies for indexing Bloom filters are compared. In the following, we outline the very recent RAMBO’s method.
An example of RAMBO structure is shown in Supplemental Box S8, bottom right panel. RAMBO builds a matrix of C columns
and T rows. Cells of the matrix are BFs. At construction, a given dataset is assigned to one cell per column. The corresponding
BFs in those cells are each updated so that all the k-mers of the dataset are inserted into each of those BFs. This creates
some (necessary) redundancy in the structure. Since several datasets can be assigned to a same cell, BFs become union BFs by
informing for the presence/absence of k-mers in more than one dataset. A query is performed on the rows, each union BF giving
a row-wise union of sets where the query could be present. The final sets containing the query are deduced by performing an
intersection of the different set unions.

Supplementary benchmarks. In Table S1, we show the results of different methods on a collection of 2585 of human blood,
brain and breast RNA-seq datasets. This collection was first used in the original SBT paper and became a de facto benchmark
for the other methods. It contains approximately 4 billion distinct 20-mers. Each reviewed article had its own, different, set of
methods for performing a benchmark using this dataset. Here we assembled the results of three different benchmarks performed
in 2018 and 2019, for which the important parameters (k value, abundance threshold) were identical. Even if hardware settings
where different in the three studies, the presented trends (in particular, impacts on disk and RAM) remain accurate. The data
processing time column refers to the time necessary to convert the original sequence files to the k-mer set indices (computation
of Bloom filters, CQF with Squeakr, Othello). The maximum external memory column corresponds to the peak disk usage
when building the index. The time column is the time required to build the set of k-mer sets index. The index size column is
the final index size. BIGSI is not a compressed index, but the authors had explored the possibility to compress using snappy
(https://google.github.io/snappy/). Parameters used for the different methods were 6 = 0.9 and BF size of 2.10°
for the SBT methods, k£ = 20 as the k-mer size for all methods, and 34 "log slots" for Mantis from the estimation of their paper.

In Table S2 we present the space and time required to build those data structures on bacterial datasets. The table is divided into
two sub-tables that correspond to two benchmarks from the literature. Contrary to the human RNA-seq experiments, these two
benchmarks were not reconcilable, in terms of used datasets and parameters, thus we chose to present them separately. The first
one shows results from ?, containing 1,000 bacterial, viral and parasitic whole-genome DNA files, obtained from the BIGSI
paper (http://ftp.ebi.ac.uk/pub/software/bigsi/nat_biotech_2018/ctx/). The second one is from ?
and contains 4,000 datasets 16,000 Salmonella strains (NCBI BioProject PRINA183844).


https://google.github.io/snappy/
http://ftp.ebi.ac.uk/pub/software/bigsi/nat_biotech_2018/ctx/

Tool Max Ext. Memory (GB)  Time (h, wall clock) Peak RAM (GB) Index Size (GB)

Table (a)

SBT N/A 1.9 11 20
SSBT N/A 8.0 1.5 33
AllsomeSBT N/A 2.0 7.1 21
HowDeSBT N/A 21 108 1.9
BIGSI N/A 1.2 247 28
COBS N/A 0.01 2.6 3.0
SeqOthello N/A 0.7 12 4.4
Mantis N/A 0.4 88 16
Table (b)

Vari 1,000 11 136 51
Vari-Merge 1,000 12 52 51
Rainbowfish 1,000 11 136 51
BFT 900 52 120 99
Multi-BRWT 1,300 42 156 1,300
Mantis+MST 36 12 52 51

Supplemental Table S2. Space and time required to build indices on bacterial datasets. Table (a). The table shows results from a
benchmark done in the COBS article ?. The COBS benchmark contains 1,000 microbial DNA files, consisting of various bacterial, viral
and parasitic WGS datasets (in the ENA as of December 2016) with an average of 3.4 million distinct k-mers per file. No cutoff on
k-mer abundances was used before constructing the data structures. In the COBS benchmark, k£ was set to 31. In the table, COBS
denotes for the COBS compact index that allows more than one batches of BFs. Table (b) shows results from the Vari-Merge article ?
The Vari-Merge benchmark contains 4,000 datasets totalling 1.1 billion distinct k-mers from 16,000 Salmonella strains. Note that it has
more genomes than the COBS benchmark, but it possibly contains a lower variability in k-mer content. In the Vari-Merge benchmark,
methods were run with k = 32, with the exception of BFT that was run with k = 27. When applicable, other parameters (for both Table
(a) and (b)) were set to their defaults.



construction query

SBT O(nxb)* O(Q x h)
VARI O(N xlog(N)) O(Q xn)
Mantis O(N xn) O(Q xn)
SeqOthello  O(N xn) O(Q xn)
BFT O(N xn) O(Q xn)
BIGSI O(nxb) O(Q xn)
RAMBO unreported O(Q x v/n xlog(n))

Supplemental Table S3. Time complexities for the construction and query of the main approaches. N is the total number of distinct
k-mers, n is the number of datasets, @) the query size (number of k-mers). We denote by b the number of bits in a Bloom filter, and h
the number of datasets that contain at least 6% of Q k-mers. We consider k as a relatively small constant (around 21-63). * This time
complexity is derived from Theorem 1 in ? with the assumption that the size of the Bloom filter b is roughly O(N/n). Note that there
may be an additional complexity cost for building the topology of the tree through clustering. We note that in the worst case (majority of
k-mers present in all datasets), the query complexities of SBTs would be O(Q x n).



Supplemental Box S1. Hashing techniques

Bloom filters The example filter has a set of two functions f and g. In (1) a is inserted by putting 1s at positions 2
and 4 indicated by both functions. (2) b is inserted similarly. (3) x is queried, g(z) giving a 0 we are certain that it is not
present in the filter.

S1 ={a,b}, X$ S1

) - 3)
f 1
BF b\ X g f(x) AND g(x)=0
g 0] f = x notin S;

Counting Quotient filter intuition Element a and b are decomposed into ajas and b1bs. a1, by are quotients, and as,
by are remainders. (1) During a’s insertion, the quotient is used to find the position of the element in the filter, and as is
stored. The count is associated (second column). (2) similar operation for b. (3) a is re-inserted, leading to a count of 2.

(1) ) 3)

0]0 0]0 0
a=a1a2 b=b1b2 a=a1a2
0]0 0]0 0/0
CQF  —.pj1 a1 @2
f@)jola] fop1l @) b1
0]0 0]0 0]0

Othello Hashing intuition In the example below (figure), we will focus on the case where two sets S; and So are
hashed. A larger number of sets can be dealt with. Othello hashing uses two hash functions, denoted here by f and h.
The method maintains two arrays B and Bs, see panel (1). In the case of storing two sets, By and By are binary arrays.
Elements from S; will be mapped to one value z; in By and another value x2 in By such that x; # x9. Conversely,
elements from Sy will correspond to identical values ((x1,22) = (0,0) or (1,1)). In (2), the element a from S; is hashed
with f and inserted in B; at the position given by f and similarly with & and Ba. A different value will be stored in B
and in By (0 and 1). The lines between those two values visually represent their association to a. (3) b is hashed the
same way than a, ensuring again that two different values are associated to b. (4) Element c is inserted, here we cannot
ensure two different values are associated to ¢ without having a contradiction. Thus b’s 0 in Bo is modified (in red). (5)
The values associated to b must differ, so in B; we modify the 1 associated with b to a 0. (6) z,y, z are inserted, this
time they must be associated to pairs of identical elements as they belong to So. (7) y is queried by hashing it with f
and h and by checking if the associated values are identical (y in S2) or different (y in S7).

S1={a1bsc}
82={X!yyz}
B1 B2
N — _ — a — —
1) ] [ 2) || | 3), ||
OHH @H kY @] Ha
a
Othello ] p=lef [ alof Yo|b
hashing L L L | L |
@0 O a0 ©0mox
b[1| fIla b[e] JT|a yb(%la
oly
caoxl bc caUXT bc xcalpfy1|b
Han Han z[1H1]z

fly) XNOR h(y)=1 = yeS,



Supplemental Box S2. De Bruijn graphs

In the example below, the first graph is a regular De Bruijn graph from the 5-mers CCTGA, ACTGA, CTGAG, TGAGA,
GAGAA, AGAAC, GAACC, AACCT, AACCG. The node CTGAG has two ingoing edges and only one outgoing,
GAACC has two outgoing edges and only one in-going, any other vertex in-between connecting CTGAG and GAACC
has only one in-going and outgoing edge. Thus this red path can be compacted.

The second graph is the resultant compacted De Bruijn graph. The red path becomes a single red node, by concatenating
CTGAG, A, A, C and C. It keeps the same connections than the two flanking nodes. Each resultant node is referred to

as a unitig.

De Bruijn graph
AACCT

AACCG

compacted De Bruijn graph
AACCT
AACCG

For representing the nodes, the first representation uses 5 x 9 nucleotides, and the compacted representation only uses
5 X 44 9 nucleotides.



Supplemental Box S3. BOSS graph structure

We describe the BOSS data structure, as per its original flavor ?. We build a BOSS from two sequences CAGCCGA and
CAGTCGA with k£ = 3. Part (2) is the De Bruijn graph from these sequences (no reverse-complements are considered
here). In this representation, each vertex contains a 3-mer, and an edge represents a 4-mer existing in the original
sequences, the label of the edge being the last nucleotide of this 4-mer. (3) represents the same information, but with the
constraint that any nodes not containing $ must be preceded by k vertices (3 vertices) and must have at least an outgoing
edge. Thus supplementary nodes with the padding ’$’ symbol are added. (4) is the list of (k4 1)-mers in the (3) graph.

(1) (2) C C a
cagccga cag| |agc| |gcc||ccg||cga

cagtcga
95Ed k/agt gtc tcg )

t ¢© g9 a

. /
3) @

c a cC cC a $

$$$| [$$c| [$ca| [cag|[agc| [gcc| [ccgl|cgd @ $$$c, $$ca, $cag,

cagt, cagc, agtc,
k}agt gtc tcg ) gtcg, agcc, tcga,
ccga, cag$

t C g |a gccg,
edges
(5) nodes labels  (6) (7) (8)

$$9| C $$%/|c |1 IR ($$%(|c |1 c|l1
$ca g $callg 1 1|$cal|g| 1l glll

cga '$ cgal|$ 1 cga |$1 $1

$$c a $$cla |l 2 $%c a1l all $ 0
gcc g gcc g |1 gcclig|l 9131
agc | c agc||c |1 agc|ic|l (ol | ] c 3
gtc/ g gtc g1 gtc/|g| 1 gl g7
cagl ¢ HHF Jcag/|c |0 Cl0 ¢ 11
cag |t cag |t |1 cag |t|1 t|1

ccgl a ccga |l ccgllall alll

tcg a tcgla-1 tcgl|aql aq|l

agt | c agt|jc |1 lagt||c|1 cll1

(5) These (k+1)-mers are listed by lexicographic order by reading them in reverse starting from the kth nucleotide to the
first (ties are broken by the & + 1-th nucleotide). This gives a matrix of nucleotides, the last nucleotide of each (k+ 1)-
mer being in a separate red column. Each line of the matrix represents a node label in the graph, and the red vector
represents the edge labels. (6) In order to denote nodes that have several outgoing edges, a new vector (blue) is used. 1s
indicate the last occurrence of a given node, while Os mark its previous occurrences (they are necessarily contiguous).
Here node CAG has two outgoing edges, one labeled by C (green, marked 0) and the other by T (orange, marked 1).
Several edges entering the same node share the same label, all but one are marked using a —, as for yellow/blue labels.
(7) Only the last column of the matrix will be kept in the BOSS. We retain the rank of each first symbol (in red): $
appears at rank 0, A atrank 1, C atrank 3, . ... (8) The final information in the BOSS structure. From these tables, DBG
operations such as going forward, backward from a given node are shown to be possible in ?, but we do not describe
them here.



Supplemental Box S4. Details on compression of bit matrices

Color classes can be further compressed. We present here some of the known techniques.

(a) delta-based encoding (b) 1 dimension bit encoding
01111101 01111101 (EIias-Fano, RRR, ROAR)
01100101 B elleelollleeelnlelo. . —p 1011001111
1100101 __,, [ ~ >
10000111 <0,1,2,6> nxc ' <nxc
10000111 <0, 3" 5,65 (e') further compression in
00010001 wavelet trie

(c) probabilistic color classes (d) 2 dimensions bit encoding

b<c inBloom filters
¢ t0606it0 110
EE%%%% 00010000—p 111 < nxc
BEmemey | M <" 00010000 m
BF010011 01100101
(e) __»[<0143 . .
éggggéo-. :15 5 0: (sizes of alternating Os and 1s runs)

ollaN100 (positions of 1s)
olmeol0d — (91100101 (regular BV)

Delta-based encoding (a): Differences between rows in the matrix are encoded. One can e.g. encode the (column-wise)
differences between the current row and the first row as 1’s, and similarities with 0’s. This results in a sparser matrix
that can be further compressed, e.g. using (b). In Figure (a), grey zones mark similarities between pairs of vectors. The
purple vector is chosen as a reference, and positions of differences with the orange, yellow and blue vectors are recorded
into separate lists. Mantis + MST uses this technique, and it also one of SeqOthello’s strategies.

Bit encoding techniques (b,d): When encoding a color matrix: rows of the color matrix are first concatenated. The
resulting bit vector is then compressed losslessly into a shorter bit vector. In (b), rows of a color matrix (not displayed)
are concatenated then compressed by, e.g., finding runs of Os (denoted in grey) and yields a smaller vector (red vector in
the figure). Many tools implement this idea (Vari, Mantis, Rainbowfish, BiFrost, the SBTs). In (d), rectangular blocks of
Os (denoted in grey) in the color matrix are marked and removed. This allows 2-dimensional compression (red matrix),
by storing the positions of removed blocks. This solution was proposed by Multi-BWRT.

Using (e), such representations can be further compressed.

Probabilistic color classes (c): In Metannot, instead of recording the exact presence/absence of a k-mer within each
dataset, colors are stored in a Bloom filter of size b < c. Then, the retrieval of color(s) associated with a k-mer becomes
probabilistic (i.e., a color may be wrongly given to a k-mer).

Approximate color classes with hybrid compression (e) Nearly identical rows are grouped, and a representative is
chosen for each group. Then, depending on whether bit-vectors associated to the color classes are sparse (small amount
of 1s) or dense (high amount of 1s), different compression schemes are used. SeqOthello and BiFrost use this strategy
(the example shows SeqOthello’s solution). SeqOthello proposes to group similar color profiles, then uses a suitable
compression technique depending on the bit-sparsity of each group. A list of integers represents the bit-vector when
it has a few s (integers are the positions of the 1s). With many 1s, run-length encoding alternatively encodes the
consecutive number of Os and 1s. If the bit-vector has roughly the same amount of Os and 1s, no compression is used.
BiFrost differs a bit, by adapting different bit-encoding techniques as (b) to the different vector sparsities.




Supplemental Box S5. Bloom filter trie

A Bloom filter trie is a tree that stores k-mers in its leaves. A leaf can store at most ¢ k-mer, otherwise it is "burst" (i.e.
transformed) into a sub-tree. The new sub-tree consists of a node v and two or more children of v. All prefixes of length
p from the sequences in the original leaf are stored in v. All suffixes of length k£ — p that follow the i-th prefix in v are
stored in the ¢-th child of v.

We now show how to store the following k-mers in a BFT: AGGCTAGCTAA, AGGCAAACTAT, AGGCTAGGATG,
CTTATCCGACT, AGGTTCAGAAT, AGGCTACCCCC, with t =4 and p = 3. In Panel (1), the first four £-mers can be
inserted in a single leaf, since ¢t = 4. (2) The fifth k-mer AGGTTCAGAAT (red) cannot be inserted in the leaf, requiring
a burst operation. (3) To perform the burst, the prefixes of size p of the five k-mers are stored in the root. Each prefix has
a pointer to its corresponding subtree. Suffixes of length k£ — p are stored in the leaves. (4) Inserting AGGCTACCCCC
(green), it is put in the left leaf as its prefix is AGG. This induces a burst of the left leaf which is performed on Panel (5).
(6) The tree is not represented explicitly, but instead, binary vectors are introduced to optimize for space. In addition
Bloom filters are added in intermediate nodes to speed up queries. Note: k-mers are stored as tuples with their color
class.

AGGCTAGCTAA, AGGCAAACTAT, AGGCTAGGATG, CTTATCCGACT , AGGTTCAGAAT , AGGCTACCCCC

(1)

@)

3)

AGG [CTT

AGGCAAACTATH AGGCAAACTAT =
| |
AGGCTAGCTAA™ AGGCTAGCTAA = E#ﬁéglﬁ; - ATCCGACT
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AGGTTCAGAAT
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CTAGCTAA N N
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TTCAGAAT = GCTAA® d
- GGATGE
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(6) binary representation



Supplemental Box S6. Details on building blocks in color aggregative methods.

Here we give details on the color aggregative methods strategies, and in particular the k-mer set implementations.

k-mer set color indexing
. position color class ID 1 set of
) compacted De Bruijn graph in unitigs | (for the whole graph) color classes
Pufferfish (a set of unitigs) 10000111
— k-mer — —_— 00010001
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BLight o ofJun%tigz I in bucket | (for the whole graph) (%% 180
— k-mer — bucket ID—4+— — 88 g 8
- —— minimizer I?AUF?S? 110180
Bartgioqned cor:npacted positions color vector. ID n Cﬁlﬁr Inatnces
e Bruijn grap in unitigs for each uniti Ill‘ 1I1I
(sets of unitigs in buckets) K g ( 9 //' 911181
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110081
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= mer 00010001
CQF 11001601
approximate color classes
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(an approximate bucket kmer ID ‘”2 =
Othello set of k-mers) ID in bucket
= k-mer N
Othello Othello
VARI BWT position .
(a rearranged text in BWT color ID 1 color matrix
ini _ 110180
containing k-mers) = Ge§1 I
n 861080
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of color IDS
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BWT vector
of color IDS
color class 1 set of
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hash table 1100101
AT Bloom filter trie color class 1 set of
(a set of k-mers) ID color classes
10000111
k-mer 00010001
O& burst trie 1100101

In the Figure above, the terms compacted DBG, unitigs, BWT and MPHF are defined in the main text.

Some of the techniques use minimizers. While there exist multiple definitions in the literature, here a minimizer is the
smallest /-mer that appears within a k-mer, with [ < k. "Smallest" should be understood in terms of lexicographical
order. For example in the k-mer GAACT, the minimizer of size 3 is AAC, as all other [-mers (GAA, ACT) are higher in
the lexicographical order. Minimizers are used here to create partitions of k-mers.Such partitioning techniques reduce
the footprint of position encoding.



Supplemental Box S7. k-mer aggregative methods

Index construction In SBT (Panel (a) below), all BFs in leaves are have the same length, which is related to the
estimated total number of distinct k-mers to index. The union BFs of intermediate nodes in the tree are constructed by

applying a logical OR on BFs of the children BFs.
In BIGSI (Panel (b)), all BFs must also have the same size. COBS uses the same principle but Bloom filters do not all

have the same size.

& g b )
= (@ BF(d3ud4) [1s1e160] BF(d1) =) %‘% “‘A,%
: 10110100
® BF(do)
g BF(d3) | |BF
3 size
= BF(d4)
S BF(dqudp)
'5-'5 number
of datasets B = number

of datasets

Queries Here we show in more details how queries are performed in SBTs and BIGSI (see Box 3 in the main text for
a more abstract sketch). In the Figure below (left figure), we consider a single hash function f, as it was presented in
HowDeSBT’s paper for instance, and § = 2/3. For BIGSI (right figure), we present the query step for one k-mer and
three hash functions (f, g, h). Note that usual queries are composed of more than one k-mer and aggregate the k-mers
results. A given k-mer is hashed, leading to one or several rows to lookup. In Figure (b) below, the query is performed
on the green rows. Each queried row informs on the datasets that may contain the query k-mer. All the returned bit
vectors are then summarized vertically into a single vector, using a logical AND operation. Positions yielding 1s after
this operation correspond to datasets that contain the k-mer (in the Figure example, the k-mer is present only in dataset
1). (c) The same principle is used when matrices of several sizes contain the BFs. Hashes are simply adapted to the
different sizes using a modulo.
CATGGA

ATGGAT . " ¢
TGGATA "

f \ presence: 1/3 [T0100100] BF(d1) (b)
10110100
BF(d2)

(a)

ATGGAT

presence: 3/3

0111
presence: 3/3

2/3 queried

k-mers in d3 presence in dq



Supplemental Box S8. Advanced and alternative k-mer aggregative methods

Comparison between SBT approaches For SBTs, different strategies are used to store information in each node. In
the example below, the first level of each node is a plain Bloom filter, as used in the original SBT approach. The
second level is the how + det representation used in HowDeSBT. The third is the equivalent all 4+ some or sim +rem
representations used by AllSomeSBT and SSBT. The three approaches are shown in four nodes.

At some positions (marked in green), the bits will have the same value across all the nodes of the subtree. Those bits are
marked as det (determined), and when they are, the how field records their values. In the sim + rem and all 4+ some
systems, such bits will have a value set to 1 in all/sim in the root node if and only if they are determined as 1. In this
node, the some/rem vector stores values such that all Usome = BF or simUrem = BF, where BF is the Bloom
filter of the node.

At the second level of the tree, new bits become determined (orange in the left subtree and blue in the right subtree).
The same rules apply. Moreover, bits that were marked in the upper levels are non informative (red boxes). They can be
removed from the structure, but their positions are recorded using an auxiliary bit vector (not shown).

l BF 111101111

how ----0--11
’ det 000010011
’ all’sim 000000011
some/rem 111101100

l BF 011101111 BF 111001111

Bl oot oooalo1-]
det 1101-00 det 0001
all/sim 0101000 all/sim 0000001:]
some/rem 0010011 ome/rem 1110010
| BF 910100111 011101011 111001111 000000111

iﬂiﬂ‘l |
all/sim @

Lomeitom aloloael

/ N

Comparison between Bloom filter approaches Bloom filters are grey panels in all figures below. Left: BIGSI and
COBS differences reside in the column sizes. COBS queries are as fast as BIGSI, using a system of modulos with the
different BF sizes. Middle: the DREAM-Yara index is built by interleaving the bits of each Bloom filters. Bits of the
same rank are grouped together in bins of size n. Right: each element in the RAMBO matrix is a Bloom filter (each
column of the matrix stacks complete BFs). Contrary to SBTs, RAMBO merges randomly the datasets. Queries in
SBTs are top-bottom, RAMBO queries each row and uses the intersection result.
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