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Abstract

A large number of RNA-sequencing studies set out to predict mutations, splice junctions or fusion RNAs. We
propose a method, CRAC, that integrates genomic locations and local coverage to enable such predictions to be
made directly from RNA-seq read analysis. A k-mer profiling approach detects candidate mutations, indels and
splice or chimeric junctions in each single read. CRAC increases precision compared with existing tools, reaching
99:5% for splice junctions, without losing sensitivity. Importantly, CRAC predictions improve with read length. In
cancer libraries, CRAC recovered 74% of validated fusion RNAs and predicted novel recurrent chimeric junctions.
CRAC is available at http://crac.gforge.inria.fr.

Rationale
Understanding the molecular processes responsible for
normal development or tumorigenesis necessitates both
identifying functionally important mutations and explor-
ing the transcriptomic diversity of various tissues. RNA
sequencing (RNA-seq) provides genome-scale access to
the RNA complement of a cell with unprecedented
depth, and has therefore proven useful in unraveling the
complexity of transcriptomes [1,2]. The analyses of
RNA-seq reads aim at detecting a variety of targets:
from transcribed exons and classical splice junctions with
canonical splice sites, to alternatively spliced RNAs, RNAs
with non-standard splice sites, read-through and even
non-colinear chimeric transcripts [3]. Moreover, RNA-seq
also gives access to those somatic mutations and genetic
polymorphisms that are transcribed. Chimeric RNAs
result from the transcription of genes fused together by
chromosomal rearrangements [4], especially in cancer [5],
and they can also be induced by trans-splicing between
mature messenger RNAs (mRNAs) [6]. RNA-seq can also
capture these complex, non-colinear transcripts, whose
molecular importance is still poorly assessed and which
may provide new diagnostic or therapeutic targets [7,8].

As next generation sequencing (NGS) improves and
becomes cheaper, bioinformatic analyses become more
critical and time consuming. They still follow the same
paradigm as in the first days of NGS technologies: a multi-
ple step workflow - mapping, coverage computation, and
inference - where each step is heuristic, concerned with
only a part of the necessary information, and is optimized
independently from the others. Consequently analyses suf-
fer from the drawbacks inherent to this paradigm: (a) per-
vasive erroneous information, (b) lack of integration, and
(c) information loss, which induces re-computation at sub-
sequent steps and prevents cross-verification. An example
of the lack of integration is that the mapping step cannot
use coverage information, which prevents it from distin-
guishing biological mutations from sequencing errors
early in the analysis.
Here, we design a novel and integrated strategy to ana-

lyze reads when a reference genome is available. Our
approach extracts information solely from the genome
and read sequences, and is independent of any annota-
tion; we implemented it in a program named CRAC. The
rationale behind it is that an integrated analysis avoids re-
computation, minimizes false inferences, and provides
precise information on the biological events carried by a
read. A peculiarity of CRAC is that it can deliver compu-
tational predictions for point mutations, indels, sequence
errors, normal and chimeric splice junctions, in a single
run. CRAC is compared with state-of-the-art tools for
mapping (BWA, SOAP2, Bowtie, and GASSST) [9-13],
and both normal (GSNAP, TopHat, and MapSplice)

* Correspondence: rivals@lirmm.fr
† Contributed equally
1Laboratoire d’Informatique, de Robotique et de Microélectronique de
Montpellier (LIRMM), UMR 5506, CNRS and Université de Montpellier 2, 161
rue Ada, 34095 Montpellier Cedex 5, France
Full list of author information is available at the end of the article

Philippe et al. Genome Biology 2013, 14:R30
http://genomebiology.com/content/14/3/R30

© 2013 Philippe et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://crac.gforge.inria.fr
mailto:rivals@lirmm.fr
http://creativecommons.org/licenses/by/2.0


[3,14,15] and chimeric (TopHat-fusion) [16] splice junc-
tion predictions. The results show the relevance of the
approach in terms of efficiency, sensitivity, and precision
(which is also termed specificity in the literature). We
also provide true assessments of the sensitivity of each
method by analyzing complex simulated data.
Availability: CRAC is distributed under the GPL-com-

pliant CeCILL-V2 license and is available as source code
archive or a ready-to-install Linux package from the
CRAC project website [17] or the ATGC bioinformatics
platform [18]. It includes two programs: crac-index to
generate the index of the genome, and crac for analyz-
ing the reads.

Algorithm
Overview
CRAC is a method for analyzing reads when a reference
genome is available, although some procedures (for
example, the support computation) can be used in other
contexts as well. CRAC analysis is solely based on the
read collection and on the reference genome, and is
thus completely independent of annotations. CRAC dis-
regards the sequence quality information of reads. Here,
analyzing reads means detecting diverse biological
events (mutations, splice junctions, and chimeric RNAs)
and sequencing errors from a RNA-seq read collection.
CRAC analysis is based on two basic properties: P1

and P2.
P1: For a given genome size, a sequence of a specific

length will match on average to a unique genomic posi-
tion with high probability. This length, denoted k, can
be computed and optimized [19]. Thus, in a read any
k-mer (a k-long substring) can be used as a witness of
the possible read matching locations in the genome. A
k-mer may still have a random match to the reference
genome. However, in average over all k-mers, the prob-
ability of getting a false location (FL) is approximately
10−4 with k = 22 for the human genome size [19].
P2: As reads are sequences randomly sampled from bio-

logical molecules, several reads usually overlap a range of
positions from the same molecule. Hence, a sequencing
error that occurs in a read should not affect the other
reads covering the same range of positions. In contrast, a
biological variation affecting the molecule should be visible
in many reads overlapping that position.
CRAC processes each read in turn. It considers the

k-mers starting at any position in the read (that is, m -
k + 1 possible k-mers). It computes two distinct k-mer
profiles: the location profile and the support profile.

• The location profile records for each k-mer its exact
matching locations on the genome and their number.
• The support profile registers for each k-mer its
support, which we define as the number of reads

sharing this k-mer (that is, the k-mer sequence
matches exactly a k-mer of another read). The sup-
port value has a minimum value of one since the
k-mer exists in the current read.

CRAC’s strategy is to analyze these two profiles jointly
to detect multiple events and predict sequencing errors in
a single analysis, as well as potential genetic variations,
splice junctions, or chimeras (Additional file 1). The geno-
mic locations of a k-mer are computed using a com-
pressed index of the reference genome, such as a
compressed Burrows-Wheeler transform [20], while the
support of a k-mer is obtained on-the-fly by interrogating
a specialized read index, called a Gk arrays [21]. CRAC
ignores the pairing information of paired end reads. Each
read in a pair is processed independently of the other.
Clearly, the support is a proxy of the coverage and

allows property P2 to be exploited for distinguishing
sequencing errors from variations, and gaining confidence
in predictions. As illustrated below, the location profile
delivers a wealth of information about the mapping, but
the originality of CRAC is its ability to detect the concor-
dance of variations in the two profiles.

Description of the algorithm
In a collection, some reads will exactly match the refer-
ence genome, while others will be affected by one or
more differences (with a probability that decreases with
the number of differences). Here, we describe how a
read is processed and concentrate on reads that differ
from the reference. For clarity, we make simplifying
assumptions: (a) k-mers have no false genomic locations,
(b) the read is affected by a single difference (substitu-
tion, indel, or splice junction), and (c) this difference is
located >k nucleotides away from the read’s extremities
(otherwise, we say it is a border case). These assump-
tions are discussed later.
Consider first a substitution, which may be erroneous

(a sequencing error) or of biological origin (an SNP, sin-
gle nucleotide variant (SNV), or editing). Say the substi-
tution is at position h in the read. All k-mers overlapping
position h incorporate this difference and will not match
the genome. Thus, the location profile will have zero
location for k-mers starting in the range [h - k + 1, h]. In
contrast, k-mers starting left (respectively right) of that
range will have one location in the genome region where
the RNA comes from. Moreover, locations of the k-mers
starting in h − k and h + 1 are k + 1 nucleotides apart on
the genome. We call the range of k-mers having zero
location, a break (Figure 1a). This allows the location of
the difference in both the read and the genome to be
found, but does not distinguish erroneous from biological
differences. The support profile will inform us on this
matter.
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If the substitution is a sequencing error, it is with high
probability specific to that read. Hence, the k-mers overlap-
ping the substitution occur in that read only: their support
value is one (minimal). If the substitution is biological, a
sizeable fraction of the reads covering this transcript posi-
tion share the same k-mers in that region. Their support
remains either similar to that of k-mers outside the break
or at least quite high depending on the homozygosity or
heterozygosity of the mutation. An erroneous difference
implies a clear drop in the support profile over the break
(Figure 1b). Thus, the ranges of the location break and the
support drop will coincide for an error, while a biological
difference will not specifically alter the support profile over
the break. To detect this drop we compare the average

support inside versus outside the break using a separation
function (Figure 1b and Additional file 2). Using this proce-
dure, support profiles are classified as undetermined if the
support is too low all along the read, and otherwise as
either dropping or non-dropping. Reads with a dropping
support profile are assumed to incorporate sequencing
errors, and those with a non-dropping support to accu-
rately represent sequenced molecules.
This procedure can be generalized to differences that

appear as long indels; all cases are summarized by a detec-
tion rule. We can apply a similar location/support profile
analysis to predict such events.
Rule 1 (Figure 1c): Consider a read affected by a single

difference (substitution, indels) compared to the genome.

Read

SNV
error

k-mers

k-mer mappability
break

(a) Analysis of the location profile

Analysis of the support variation

29 reads share the k-
mer starting here

30

1

Stable

There is only one read
with this erroneous k-mer

30

1

Variable

(b) Analysis of the support profile

k-mer that does not exactly map to the genome

Starting position of a k-mer that does not exactly map to the genome

k-mer that exactly maps to the genome

Starting position of a k-mer that exactly maps to the genome

(c)

Genome

Read

expected break

False locations

mirage breaks

(d)

Figure 1 The CRAC algorithm. (a) Illustration of a break in the location profile. We consider each k-mer of the read and locate it exactly on the
genome. In all figures, located k-mers are shown in blue, and unmapped k-mers in light orange. If the read differs from the genome by, for
example an SNV or an error, then the k-mers containing this position are not located exactly on the genome. The interval of positions of
unmapped k-mers is called a break. The end position of the break indicates the error or SNV position. (b) The support profile. The support value
of a k-mer is the number of reads from the collection in which this k-mer appears at least once. The two plots show the support profile as a
black curve on top of the location profile (in blue and orange). The support remains high (left plot) over the break if many reads covering this
region are affected by a biological difference (for example, a mutation); it drops in the region of the break when the analyzed read is affected
by a sequencing error; in this case, we say the support is dropping. (c) Rules for differentiating a substitution, a deletion, or an insertion
depending on the break. Given the location profile, one can differentiate a substitution, a deletion, or an insertion by computing the difference
between the gap in the genome and the gap in the read between k-mers starting before and after the break. (d) False locations and mirage
breaks. When false locations occur inside or at the edges of a break they cause mirage breaks. False locations are represented in red. The break
verification and break merging procedures correct for the effects of false locations to determine the correct break boundaries (and for example
the correct splice junction boundaries) to avoid detecting a false chimera (Rule 2a) instead of a deletion. SNV: single nucleotide variant
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Let jb <ja (where b stands for before and a after) be the
positions immediately flanking the observed break in the
location profile (that is, the break is in the range [jb + 1,
ja − 1]). Let l := ja − jb. L denotes the offset between the
genomic locations of the k-mers starting in jb and ja, so
that L := loc(ja) - loc(jb). (1) If l = L = k + 1 the difference
consists of a single substitution at position ja − 1 in the
read and loc(ja) − 1 in the genome. (2) If l = k and L =
k + p for some integer p, then this is a p nucleotide dele-
tion with respect to the reference genome, which is
located between position ja − 1 and ja in the read, and
between loc(ja) − p and loc(ja) − 1 on the genome. (3)
Symmetrically, if l = k + p and L = k for some integer p,
the difference is a p nucleotide insertion with respect to
the reference.
We call the k-mer concordance the condition that loc

(ja) and loc(jb) are on the same chromosome, the same
strand, and that loc(ja) − loc(jb) equals ja - jb plus or
minus the inferred difference (that is, 0 for a substitu-
tion and p for indels). This notion can be extended to
all k-mer pairs on each side of the break (that is, not
merely jb, ja).
The observed missing part in the read can be due to a

polynucleotidic deletion or the removal of intronic or
intragenic regions by splicing. Without annotations, only
the expected length (that is, the value of p) can distin-
guish these cases. CRAC uses arbitrary, user-defined
thresholds to classify such biological deletions into short
deletions and splice junctions. CRAC does not use splice
site consensus sequences.
Rule 2: Other reads may present profiles not considered

in Rule 1. In particular, some reads will have a break but
the genomic locations at its sides are either on distinct
chromosomes or not colinear on the same chromosome.
We term these chimeric reads (by chimeric we mean
made of a non colinear arrangement of regions rather
than unreal), and consider three subcases corresponding
to possible known combinations [4]: (a) same chromo-
some, same strand but inverted order, (b) same chromo-
some but different strands, and (c) different chromosomes.
(For chimeric RNAs, CRAC can even distinguish five sub-
classes; see Additional file 2 for details). CRAC can handle
such cases with the profile analysis. These cases resemble
that of deletions (Rule 1, case 2), except that the genomic
locations are not colinear. Indeed, CRAC checks the break
length l = k, as well as the coherence of adjacent k-mers
left or right of the break. Coherence means that, for some
(small) integer δ, k-mers in the range [jb − δ, jb] (respec-
tively, [ja, ja + δ]) have adjacent locations on the genome.
Reads satisfying these criteria and harboring a non-drop-
ping support profile are primarily classified as chimeric
reads, which may reveal artifactual or sheer chimeric
RNAs (chRNAs) (see Discussion).

CRAC processes reads one by one, first by determining
the location breaks, then analyzing the support profile,
and applying the inference rules whenever possible. A
read is classified according to the events (SNV, error,
indels, splice, or chimera) that are predicted, and its map-
ping unicity or multiplicity. Additional file 1 gives an
overview of the classification. The CRAC algorithm is
described for the analysis of an individual read, but its
output can be parsed to count how many reads led to the
detection of the same SNV, indel, splice, or chimera; this
can serve to further select candidates. CRAC accepts the
FASTA and FASTQ formats as input, and outputs dis-
tinct files for each category, as well as a SAM formatted
file with mapping results.
In describing CRAC’s method above, we first assumed

simplifying conditions: especially the absence of false
locations (FLs) and border cases. Some details will clar-
ify how the actual procedure handles real conditions.
Differences with the genome at a read’s extremities
(border cases)
Border cases are not processed with a specific procedure
by CRAC; instead, the sequencing depth of NGS data
indicates border cases. While processing a read, if an
event (say, a splice junction) generates a break at one of
the read’s extremities, the coverage ensures that the
same event is likely located in the middle of other reads,
and will be detected when processing these. The border
case read is classified either as undetermined or biologi-
cally undetermined depending on its support profile,
and it is output in the corresponding files.
False locations (Figure 1d)
Our criterion to set k ensures a low average probability of
a random k-mer match on the genome [19], but it does
not prevent random matches, which we term false loca-
tions. Compared to true (unique or multiple) locations, FL
of a k-mer will generally not be coherent with those of
neighboring k-mers. It may also alter the break length in
an unexpected manner, making the break length another
criterion of verification (Rule 1). When a read matches the
genome, CRAC considers ranges of k-mers having coher-
ent locations to infer its true genomic position. In the case
of a break, CRAC faces two difficulties. First, when a FL
happens at the end of a break, CRAC may incorrectly deli-
mit the break. When a FL occurs inside a break, it makes
adjacent false breaks, termed mirage breaks. In both cases,
the FL may cause CRAC to avoid Rule 1, apply Rule 2,
and predict a false chimeric read. To handle a FL at a
break end, CRAC uses a break verification procedure, and
it applies a break fusion procedure to detect and remove
mirage breaks.
These procedures are detailed in Additional file 2, which

also includes explanations of the distinction of dropping
and non-dropping supports around a break, on read
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mapping at multiple locations, on the subclassification of
chimeric reads, and on the simulation protocol.

Results
We evaluated CRAC for mapping reads, predicting candi-
date SNVs, indels, splice junctions, and chimeric junctions,
and compared it to other tools. Simulated data are needed
to compute exact sensitivity and accuracy levels, while real
data enable us to study predictions with biologically vali-
dated RNAs. For simulating RNA-seq, we first altered a
reference genome with random substitutions, indels, and
translocations to derive a mutated genome, then reads
were sequenced in silico using FluxSimulator [22], the
annotated RefSeq transcripts, and a realistic distribution of
random expression levels (Additional file 2). As read
lengths will increase, we used two simulated datasets to
assess different strategies: one (hs75) with a typical read
length of 75, another (hs200) with reads of 200 nt repre-
senting the future.

Mapping with current (75 nt) and future (200 nt) reads
Mapping, that is, the process of determining the location
of origin of a read on a reference genome, provides critical
information for RNA-seq analysis. Currently used mappers
(Bowtie, BWA, SOAP2 and Bowtie2) compute the best
continuous genome-read alignments up to a certain num-
ber of differences [9,11,12,23]. CRAC and GSNAP [14],
also consider discontinuous alignments to search for the
locations of reads spanning a splice junction: they can find
both continuous and spliced alignments.
An overview of mapping results with 75 nt reads

(Table 1) indicates a high level of precision, but strong
differences in sensitivity among tools. All achieve a global
precision >99%, meaning that output genomic positions
are correct. Bowtie, BWA, and SOAP2 are similar by

design, and all look for continuous alignments with a few
substitutions and small indels. Although its approach dif-
fers, GASSST also targets these (and is better for longer
indels). Even within this group, the sensitivity varies sig-
nificantly: from 70% for GASSST to 79% for BWA. These
figures are far from what can be achieved on RNA-seq
data since GSNAP and CRAC, which also handle spliced
reads, reach 94% sensitivity: a difference of at least 15
points compared to widely used mappers (Bowtie2
included). As only uniquely mapping reads were counted,
the sensitivity cannot reach 100%: some reads are taken
from repeated regions and thus cannot be found at a
unique location.
One gets a clearer view by considering the subsets of

reads that carry an SNV, an indel, an error, a splice, or a
chimeric junction (Figure 2). Strikingly, CRAC is the only
tool that achieves similar performance, a sensitivity of 94%
to 96%, in all categories. For instance with indels, GSNAP
yields 65% and 83% sensitivity on insertions and deletions
respectively, Bowtie2 yields 70% sensitvity for both inser-
tions and deletions, while the other tools remain below
30%. BWA, GASSST, Bowtie, and SOAP2 output continu-
ous alignments for 9% to 19% of spliced reads, and Bow-
tie2 up to 35%. Although their output locations are
considered correct, for they are in one exon, their align-
ments are not. Such reads are considered as mapped and
thus not reanalyzed by tools like TopHat or MapSplice in
a search for splice junctions, which may lead to missing
junctions.
Analyzing longer reads (200 nt) is another challenge: the

probabilities for a read to carry one or several differences
(compared to the reference) are higher. In this dataset,
36% of the reads cover a splice junction, and 50% carry an
error. Compared to the 75 nt data, while their precision
remains >99%, BWA, GASSST, Bowtie, Bowtie2, SOAP2,
and GSNAP, have lower sensitivity (approximately 10
points less for BWA-SW, GASSST, and GSNAP, 14 for
Bowtie2, and 20 for Bowtie). Only CRAC remains as pre-
cise and gains 1.5 points in sensitivity (Table 1). The detail
by category confirms this situation (Figure 2), showing
CRAC is better than current tools. CRAC’s k-mer profiling
approach can accurately handle reads altered by distinct
categories of biological events, and importantly adapts well
to longer reads.
The same analyses have been performed on Drosophila

datasets and these show that all tools perform better, but
the differences between tools remain (Additional file 3).
The run times and memory usage of all tools are given in
Additional file 3, Table S3. CRAC requires a large memory
and its run time for analyzing reads ranges between that of
Bowtie and TopHat, which are practical tools. Indexing
the human genome with crac-index takes two hours on an
x86_64 Linux server on a single thread and uses 4.5 giga-
bytes of memory.

Table 1 Comparative evaluation of mapping sensitivity
and precision

75 bp 200 bp

Tool Sensitivity Precision Sensitivity Precision

Bowtie 75.42 99.59 55.72 99.81

Bowtie2 76.64 99.26 62.31 98.78

BWA/BWA-SW 79.29 99.13 68.66 96.86

CRAC 94.51 99.72 95.9 99.79

GASSST 70.73 99.09 59.43 97.86

GSNAP 94.62 99.88 84.84 99.28

SOAP2 77.6 99.52 56.08 99.78

We compared the sensitivity and precision of different tools on the human
simulated RNA-seq (42M, 75 nt and 48M, 200 nt) against the human genome
for mapping. The sensitivity is the percentage of correctly reported cases over
all sequenced cases, while the precision is the percentage of correct cases
among all reported cases. Values in bold in the three tables indicate the
maximum of a column, and those in italics the second highest values. For all
tasks with the current read length, CRAC combines good sensitivity and very
good precision. Importantly, CRAC always improves sensitivity with longer
reads, and delivers the best sensitivity while keeping a very high precision.
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Predicting distinct categories of biological events
Mapping is not a goal per se, but only a step in the analy-
sis; the goal of read analysis is to detect candidate biolo-
gical events of distinct categories (SNVs, indels, and
splice and chimeric junctions) from the reads. The ques-
tion is: if, for example, there is an SNV or splice junction
that has been sequenced, can it be predicted and not bur-
ied under a multitude of false positives (FPs)? Here, sen-
sitivity and precision are relative to the number of events,
not to the number of reads covering them. We assessed
CRAC’s prediction ability and compared it to splice junc-
tion prediction tools on our simulated datasets.
Figure 3 gives CRAC’s precision and sensitivity for

each category of events and for sequencing error detec-
tion. For SNVs and indels (<15 nt), CRAC achieves a
sensitivity in the range [60,65]% and a precision in the
range [96.5,98.5]% (Figure 3), making it a robust solu-
tion for such purposes. Typically, CRAC missed SNVs
that either have low coverage (42% of them appear in
≤2 reads) or are in reads carrying several events (66% of
missed SNV reads also cover a splice junction). For the
splice junction category, CRAC delivers 340 false and
67,372 true positives (TPs).

An overview and the effect of read length on sensitivity
and precision are shown in Table 2. With 75 nt, all splice
detection tools achieve good sensitivity, ranging from
79% for CRAC to 85% for TopHat, but their precision
varies by more than 10 points (range [89.59,99.5]). CRAC
reaches 99.5% precision and thus outputs only 0.5% FPs;
for comparison, MapSplice and GSNAP output four
times as many FPs (2.32% and 2.97%), while TopHat
yields 20 times more FPs (10.41%). With 200 nt reads,
tools based on k-mer matching, that is CRAC and MapS-
plice, improve their sensitivity (6.5 and 5 points respec-
tively), while mapping-based approaches (GSNAP and
TopHat) lose, respectively, 12 and 30 points in sensitivity,
and TopHat2 gains 6.4 points in sensitivity. With long
reads, CRAC has the second best sensitivity and the best
precision (>99%). It also exhibits a better capacity than
MapSplice to detect junctions covered by few reads:
15,357 vs 13,101 correct junctions sequenced in ≤4 reads.
A comparison using chimeric RNAs shows that CRAC

already has an acceptable balance between sensitivity
and precision with 75 nt reads (53% and 93%, respec-
tively), while the sensitivities of TopHat-fusion and
MapSplice remain below 32% (Table 3). With 200 nt
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Figure 2 Comparison of mapping results by category for seven tools. The figure shows the mapping by event category on simulated RNA-seq
against the human genome on datasets with short and long reads (left 42M, 75 nt; right 48M, 200 nt) for seven different mapping tools: Bowtie, Bowtie2,
BWA/BWA-SW, CRAC, GASSST, GSNAP, and SOAP2. We consider six categories of reads depending on whether they contain an SNV, an insertion, a
deletion, a junction, a sequence error, or a chimeric splice junction (a chimera). In each category, the bar is the percentage of those reads mapped at a
unique location by the corresponding tool. The red tip at the top of the bar is the percentage of incorrectly mapped reads. With 75 nt reads, CRAC is
better than the other tools, reaching a sensitivity >90% and a precision >95% whatever the category. The other tools except GSNAP are below 50%
sensitivity for mapping reads in categories where spliced alignments are needed (for which they are not intended) and for reads containing insertions or
deletions. With 200 nt reads, CRAC remains by far the most sensitive and specific tool; the difference between CRAC and GSNAP and Bowtie2 increased in
all categories. Compared to short reads, the other tools had a better mapping of insertion and deletion containing reads. SNV: single nucleotide variant
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reads, only CRAC is able to predict chimeric splice
junctions with acceptable precision, and sensitivity is
improved compared to shorter reads (Table 3 and Addi-
tional file 3).
As with mapping, for all categories of event, CRAC’s

prediction performance improves with longer reads
(Figure 3).

Predicting distinct categories of biological events on
real data
Splice junction prediction
To evaluate CRAC’s ability to detect splice junctions in
real RNA-seq data, we compared it to state-of-the-art

tools (TopHat, GSNAP, and MapSplice) on a dataset of
75 million stranded 100 nt reads (ERR030856; see Addi-
tional file 4 Table S1). Splice junctions were searched for
using each tool and then compared to human RefSeq tran-
scripts. Each found junction consists of a pair of genomic
positions (that is, the exons 3’ end and 5’ start) and we
considered that it matches a RefSeq junction if the posi-
tions were equal within a 3 nt tolerance. Found junctions
were partitioned into known, new, and other junctions
(KJs, NJs, and OJs, respectively). Known junctions are
those already seen in a RefSeq RNA, new ones involve
RefSeq exons but in a combination that has not yet been
observed in RefSeq, while the remaining junctions go into

(A)

SNV Ins. Del. Splices Errors Chimera

200bp
True positives 37,833 3,347 3,290 125,530 31,023,122 1,185
False positives 1,899 151 68 1,027 139,676 129

75bp
True positives 18,670 1,641 1,637 67,372 10,324,528 624
False positives 609 57 26 340 37,660 41
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Figure 3 Sensitivity and precision of CRAC predictions by category for human simulated data. (A) Absolute numbers of true and false
positives reported by CRAC. These figures are the number of distinct events, say SNVs, reported by CRAC, not the number of reads containing
the same SNV. False positives represent a small fraction of its output, thereby indicating a high level of precision. (B) and (C) For each category,
the figure shows the proportion of events found by CRAC for the 75 nt and 200 nt datasets. The blue bars are the true positives, while the red
bars on top are the false positives. The height of a blue bar gives CRAC’s sensitivity, and the relative height of the red part of the bar gives the
precision. For the two read lengths, for all categories the sensitivity increases with longer reads, while the precision in each category varies only
a little. SNV: single nucleotide variant
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the class other. Note that known RefSeq junctions include
both junctions between neighboring exons and alternative
splicing cases, mostly caused by exon skipping or alterna-
tive splice sites [24]. Novel junctions will provide new
alternative splicing candidates, while junctions in class
other are totally new candidate RNAs.
For each tool, the distribution of junctions in the classes,

and the number of detected RefSeq RNAs and genes
(those having at least one KJ or NJ) are given in Figure 4a.
The agreement on known junctions (KJs) among the tools
is shown as a Venn diagram (Figure 4b); see Additional
file 4 for the corresponding figures and a Venn diagram
on novel junctions (NJs). Clearly, MapSplice, GSNAP, and
CRAC find between [140,876;144,180] known junctions
and all three agree on 126,723 of them. GSNAP and
CRAC share 93% of CRAC’s reported known junctions.
TopHat reports about 25,000 junctions fewer than the
other tools, and only 1,370 of its junctions are not detected

by any of them. For instance, CRAC covers 93% of
TopHat’s KJs. As known junctions likely contain truly
expressed junctions of well-studied transcripts, these fig-
ures assess the sensitivity of each tool and suggest that in
this respect CRAC equals state-of-the-art tools. Logically,
the numbers vary more and the agreements are less pro-
nounced among novel junctions. A marked difference
appears within the class other: CRAC yields only 20.36%
of other junctions, while with the other tools find [25;27]%
of detected junctions.
To further test CRAC with negative controls, we cre-

ated a set of 100,000 random junctions by randomly
associating two human RefSeq exons, and for each we
built a 76 nt read with the junction point in the middle
of the read (see Additional file 4). These 100,000 reads
were processed by CRAC with k = 22 and it predicted
no splice junctions.
Are the junctions in classes New and Other interesting

candidates? To check predicted junctions, we extracted a
50 nt sequence around each inferred junction point and
aligned it with BLAST against the set of human mRNAs/
ESTs (for details and results see Additional file 4). A 50 nt
sequence can either match over its entire length on an
EST or match only one side of the junction but not both
exons. The former confirms the existence of that junction
in the ESTs and yields a very low E-value (≤10-15), while
the latter has a larger value (≥10-10). As expected, at least
95% of KJs have very low E-values against ESTs, whatever
the tool. Among new and other junctions, BLAST reports
good alignments for respectively 68% and 69% of CRAC’s
junctions. The corresponding figures are 47% and 47% for
GSNAP, 49% and 50% for MapSplice, 51% and 44% for
TopHat. The percentages of OJs and NJs confirmed by
mRNAs are >13% for CRAC and <8% for all other tools
(excepted for OJs with TopHat, which was 17%, the same
as CRAC). If we consider all junctions, 93% of CRAC junc-
tions align entirely to an EST with a good hit. Whatever
the class of the junctions, CRAC predicts more unreported
junctions that are confirmed by mRNAs or ESTs than the
other tools. This corroborates the precision rates obtained
by these tools on simulated data.
Regarding expressed transcripts, all tools detect

>18,000 transcripts and agree on 17,131 of them (Addi-
tional file 4 Figure S1). GSNAP and CRAC agree on
97% (19,431) of CRAC’s detected transcripts, expressed
in 15,589 distinct genes, which represents 87% of the
17,843 multi-exon RefSeq genes.
By simultaneously exploiting the genomic locations and

support of all k-mers gives CRAC some specific abilities for
junction detection. CRAC reports 752 junctions with an
intron larger than 100 knt. The other tools find fewer of
these junctions: 695, 589, and 470 for GSNAP, MapSplice,
and TopHat, respectively, but both MapSplice and TopHat
find fewer than expected by chance according to the global

Table 2 Comparative evaluation of splice junction
prediction tools

75 bp 200 bp

Tool Sensitivity Precision Sensitivity Precision

CRAC 79.43 99.5 86.02 99.18

GSNAP 84.17 97.03 72.94 97.09

MapSplice 79.89 97.68 84.72 98.82

TopHat 84.96 89.59 54.07 94.69

TopHat2 82.25 92.71 88.65 91.35

We compared the sensitivity and precision of different tools on the human
simulated RNA-seq (42M, 75 nt and 48M, 200 nt) against the human genome
for splice junction prediction. The sensitivity is the percentage of correctly
reported cases over all sequenced cases, while the precision is the percentage
of correct cases among all reported cases. Values in bold in the three tables
indicate the maximum of a column, and those in italics the second highest
values. For all tasks with the current read length, CRAC combines good
sensitivity and very good precision. Importantly, CRAC always improves
sensitivity with longer reads, and yields the best precision (that is the fewer
false positives) over all solutions, even against specialized tools like TopHat.

Table 3 Comparative evaluation of chimeric RNA
prediction tools

75 bp 200 bp

Tool Sensitivity Precision Sensitivity Precision

CRAC 53.89 93.84 64.86 90.18

MapSplice 2.33 0 2.63 0.01

TopHat2 77.72 7.32 70.72 12.50

TopHat-fusion 32.73 42.02

TopHat-fusion-post 12.26 97.22

We compared the sensitivity and precision of different tools on the human
simulated RNA-seq (42M, 75 nt and 48M, 200 nt) against the human genome
for chimeric junction prediction. The sensitivity is the percentage of correctly
reported cases over all sequenced cases, while the precision is the percentage
of correct cases among all reported cases. Values in bold in the three tables
indicate the maximum of a column, and those in italics the second highest
values. For all tasks with the current read length, CRAC combines good
sensitivity and very good precision. Importantly, CRAC always improves
sensitivity with longer reads, and has the best balance between sensitivity
and precision. TopHat-fusion could not process 200 nt reads.
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agreement between these tools (Additional file 4). CRAC
also reveals 69,674 reads that cover exactly two known
RefSeq junctions, that is, that cover three distinct exons
and include one of them. An example of a double junction
covering a 29 nt exon of the CALM2 gene is shown in
Additional file 4. Moreover, of 9,817 of such junctions,
GSNAP, MapSplice, and TopHat, find respectively 8,338,
9,167, and 7,496, which for GSNAP and TopHat is less
than expected by taking a random sample of junctions

(Additional file 4). CRAC even maps reads spanning 3
successive junctions (4 exons), and finds an additional 89
junctions, which are not all reported by current tools. For
instance, GSNAP does not map such reads. An example
for the TIMM50 gene is shown in Figure 4c. Altogether,
these results suggest that numerous new splice junctions,
even between known exons, remain to be discovered [25],
but other predicted junctions that would correspond to
completely new transcripts may also be due in part to the

ERR030856 CRAC MapSplice TopHat GSNAP
% # % # % # % #

known SJ 77.63 142,000 68.67 140,876 71.02 116,687 68.12 144,180
new SJ 2.01 3,671 4.35 8,921 3.62 5,956 5.13 10,861
other SJ 20.36 37,254 26.98 55,349 25.35 41,667 26.76 56,626
RefSeq RNAs 19,998 19,549 18,326 20,313
RefSeq genes 15,868 15,825 15,223 15,935

(a)

(b)

(c)

Figure 4 Splice junction detection using human real RNA-seq: comparison and agreement. The figure shows the detection of splice
junctions by CRAC, MapSplice, TopHat, and GSNAP for a human six-tissue RNA-seq library of 75M 100 nt reads (ERR030856). (a) Number and
percentage of known, new, and other splice junctions detected by each tool with +/−3 nt tolerance for ERR030856. (b) Venn diagram showing
the agreement among the tools on known RefSeq splice junctions (KJs). Additional file 4 has pending data for novel junctions (NJs) and RefSeq
transcripts. (c) A read spanning four exons (2 to 5) and three splice junctions of the human TIMM50 gene displayed by the UCSC genome
browser. The included exons, numbers 3 and 4, measure 32 and 22 nt, respectively. So exon 3 has exactly the k-mer size used in this
experiment. KJ: known splice junction; SJ: splice junction
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inaccuracy of splice junction prediction tools. In this
respect, CRAC seems to ally sensitivity and precision,
which should help discriminate true from false candidates,
while it has good potential for detecting multiple junctions
occurring within the same read. Such reads with multiple
junctions will be more abundant with longer reads, and are
useful for the reconstruction of transcripts, which is done
on the basis of detected junctions [26].
Comparisons of chimeric splice junction prediction
Edgren et al. used deep RNA-sequencing to study chimeric
gene fusions in 4 breast cancer cell lines (BT-474, KPL-4,
MCF-7, and SK-BR-3; see Additional file 4 Table S1); they
found 3 known cases and validated 24 novel intergenic
fusion candidates (that is, involving 2 different genes) [27].
As CRAC, TopHat-fusion can predict both intragenic and
intergenic chRNA candidates and identify a chimeric junc-
tion in a spanning read [16]. For evaluation purposes, we
processed each library with TopHat-fusion and CRAC, and
compared their results. TopHat-fusion exploits both the
read sequence and the read pairs, while CRAC uses only
the single read sequence. Otherwise, TopHat-fusion per se1

and CRAC both select potential chRNAs based on compu-
tational criteria. We further filtered out all candidate chi-
meric reads for which an alternative, colinear alignment
was found by GSNAP (Additional file 4). Then, filtered
predictions were compared with valid chRNAs. A post-fil-
tering script, called TopHat-fusion-post, based on biologi-
cal knowledge, can be applied to TopHat-fusion results,
but in [16] its parameters were chosen ‘using the known
valid fusions as control’, and may have biased the compari-
son. So, we recalculated all predictions using TopHat-
fusion with and without TopHat-fusion-post.
The numbers of distinct candidate chimeric junctions

(chRNA for short) and chimeric single reads detected by
both tools in each library are given in Table 4.
The 50 nt reads, which are well suited for Bowtie and

TopHat, are unfavorable for CRAC, which performs better
with longer reads. Globally after filtering with GSNAP,
TopHat-fusion reports a total of 193,163 chRNAs, while
CRAC outputs 455: a 600-fold difference. Compared

to the results obtained above for a six-tissue library
(ERR030856), TopHat-fusion reports about as many chi-
meric junctions as CRAC, GSNAP, or MapSplice for nor-
mal splice junctions. Such a set likely includes a majority
of false positives as already noted [16], and cannot help in
estimating the quantity of non-colinear RNAs in a tran-
scriptome. In comparison, CRAC’s output is a practical
size and allows an in-depth, context-dependent investiga-
tion for promising candidates for validation.
In CRAC’s output, intragenic and intergenic chRNAs

account for 58% and 42% respectively, and are parti-
tioned into five subclasses (Methods, Additional file 5).
Looking at the intersection, TopHat-fusion also outputs
76% (346) of the chRNAs found by CRAC, therefore pro-
viding additional evidence in favor of their existence,
since the presence of some supporting read pairs is a
mandatory criterion in TopHat-fusion [16] (Additional
file 5).
When compared with the set of validated chimeras of

Edgren et al. [27], TopHat-fusion and CRAC detected 21
and 20 out of 27, and agreed on 17 of them (Table 5).2

The first 20 cases were found by CRAC, and the 7
remaining ones were not predicted by CRAC; however,
for the final 2, we could not detect any read matching the
15 to 20 nt over the junction. Among the seven cases
CRAC misses, only one (BCAS4-BCAS3) is a false nega-
tive, four are uncertain with not enough expressed candi-
dates (CPNE1-P13, STARD3-DOK5, WDR67-ZNF704,
and PPP1R12A-SEPT10), and no read seems to match
the junction of the two remaining ones (DHX35-ITCH
and NFS1-PREX1). As the BCAS4-BCAS3 junction
includes a substitution near the splice site, the reads
carry two events (SNV plus junction): CRAC does not
exactly position the junction and outputs them in the
BioUndetermined file, whose exploration could extract
BCAS4-BCAS3 as a candidate (future work). For the four
uncertain cases, the k-mer support over the junction
break equals one, meaning that only one read matches
the junction exactly; hence CRAC identifies a chimeric
junction, but classifies them as uncertain candidates

Table 4 Chimeric RNA detection in breast cancer libraries

Edgren
libraries

CRAC TopHat-fusion

Raw After GSNAP Raw After GSNAP

Number of
chRNAs

Number of
reads

Number of
chRNAs

Number of
reads

Number of
chRNAs

Number of
reads

Number of
chRNAs

Number of
reads

BT-474 692 9,661 153 460 109,711 349,801 81,327 189,523

KPL-4 407 5,157 60 199 32,412 98,330 23,075 53,165

MCF-7 466 3,475 90 180 42,738 121,544 27,267 57,676

SK-BR-3 703 9,354 152 577 86,249 241,219 61,494 130,682

TopHat-fusion reports approximately 200 times more raw candidates than CRAC; this ratio increases after filtering. Comparison with the set of validated chRNAs
by Edgren et al. [27] shows that both the filtered and unfiltered predictions of CRAC and TopHat-fusion include respectively 20 and 21 true chRNAs and they
agree for 17 of them.
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(Undetermined file). Three out of four are nevertheless
detected by TopHat-fusion, but with two or one spanning
reads (2,1,1) and few supporting pairs (6,5,0), thereby
corroborating CRAC’s view and confirming these are
expressed at very low levels in this dataset.
Considering validated intergenic chRNAs [27], the

sensitivity over the 27 valid chRNAs is comparable
between TopHat-fusion (77% = 21/27) and CRAC
(74% = 20/27), while the precision over the total num-
ber of candidates is markedly in favor of CRAC (21/
143,003 � 0.01% vs 20/192 � 10.4% ;3 Table 5, Addi-
tional file 5). Clearly, some experimentally validated
chRNAs (like DHX35-ITCH or NFS1-PREX1), happen
to have no read spanning their junction, and thus
should not be computationally predicted as candidates

on the basis of this read data. This important state-
ment illustrates how difficult computational chRNA
prediction is, thereby emphasizing the quality of
CRAC’s analysis. Moreover, the evidence suggests that
other promising candidate chRNAs populate CRAC’s
results.
Numerous chRNAs are predicted in classes 3/5, where

the RNA non-colinearity appears as an inversion. CRAC
detects three such chRNAs within the MAN1A2 gene,
which recur in up to three out of four breast cancer
libraries, and in a K562 library. These specific inversions
in MAN1A2 are described as post-transcriptional exon-
shuffling RNAs and found highly expressed in several
acute lymphoblastic leukemia samples [28]. Our results
support the existence of such mRNA-exhibiting shuffled

Table 5 CRAC and TopHat-fusion predictions for the set of validated chimeric junctions from breast cancer libraries

Library Fused genes Chromosomes 5’ position 5’ strand 3’ position 3’ strand Average supporta CRACb TopHat-fusionc

BT-474 SNF8-RPS6KB1 17-17 47,021,337 1 57,970,686 -1 36 Yes Yes

BT-474 CMTM7-GLB1 3-3 32,483,329 -1 33,055,545 1 2 Yes Yes

BT-474 SKA2-MYO19 17-17 57,232,490 -1 34,863,351 -1 6 Yes Yes

BT-474 ZMYND8-CEP250 20-20 45,852,968 -1 34,078,459 1 9 Yes Yes

BT-474 VAPB-IKZF3 20-17 56,964,572 1 37,934,021 -1 6 Yes Yes

BT-474 ACACA-STAC2 17-17 35,479,452 -1 37,374,427 -1 46 Yes Yes

BT-474 DIDO1-TTI1 20-20 61569147 -1 36,634,800 -1 2 Yes Yes

BT-474 RAB22A-MYO9B 20-19 56,886,178 1 17,256,205 1 9 Yes Yes

BT-474 MCF2L-LAMP1 13-13 11,371,8616 -1 113,951,811 -1 2 Yes No

KPL-4 NOTCH1-NUP214 9-9 139,438,475 -1 134,062,675 1 2 Yes Yes

KPL-4 BSG-NFIX 19-19 580,782 1 13,135,832 1 9 Yes Yes

MCF-7 RPS6KB1-TMEM49 17-17 57,992,064 1 57,917,126 1 5 Yes Yes

MCF-7 ARFGEF2-SULF2 20-20 47,538,548 1 46,365,686 -1 10 Yes Yes

SK-BR-3 PKIA-RARA 8-17 79,485,042 -1 38,465,537 -1 7 Yes Yes

SK-BR-3 TATDN1-GSDMB 8-17 125,551,264 -1 38,066,177 -1 334 Yes Yes

SK-BR-3 KCNB1-CSE1L 20-20 47,956,856 -1 47,688,990 -1 6 Yes No

SK-BR-3 CYTH1-EIF3H 17-8 76,778,283 -1 117,768,258 -1 11 Yes Yes

SK-BR-3 SUMF1-LRRFIP2 3-3 4,418,012 -1 37,170,640 -1 4 Yes Yes

SK-BR-3 SETD3-CCDC85C 14-14 99,880,273 1 100,002,353 1 3 Yes No

SK-BR-3 PCDH1-ANKHD1 5-5 141,234,002 1 139,825,559 -1 2 Yes Yes

BT-474 CPNE1-P13 20-20 34,243,123 NA 43,804,501 NA 1 No Yes

BT-474 STARD3-DOK5 17-17 37,793,479 NA 53,259,992 NA 1 No Yes

SK-BR-3 WDR67-ZNF704 8-8 124,096,577 NA 81,733,851 NA 1 No Yes

MCF-7 BCAS4-BCAS3 20-17 49,411,707 NA 59,445,685 NA 3 No Yes

KPL-4 PPP1R12A-SEPT10 12-2 80,211,173 NA 11,034,3414 NA 1 No No

SK-BR-3 DHX35-ITCH 20-20 Unknown NA Unknown NA NA No No

SK-BR-3 NFS1-PREX1 20-20 Unknown NA Unknown NA NA No No

NA: not applicable
a Average support value over the junction k-mers
b Detected by CRAC
c Detected by TopHat-fusion

CRAC and TopHat-fusion predictions on the set of validated chimeric junctions from four breast cancer libraries [27]. The first 20 cases were found by CRAC, and
the 7 remaining ones were not predicted by CRAC; however, for the final 2, we could not detect any read matching the 15 to 20 nt over the junction. A short
read length penalizes CRAC: indeed, with k = 22, only the 6 (= 50 - 2 × 22) middle positions of a read could be used to locate any event (splices or mutations)
exactly. Hence we expect that the spanning reads by which a chRNA is amenable to detection by CRAC to be rare. NA: not applicable. Columns: library, fused
genes ID, annotation of the junction points, chromosomes, 5’ position and strand, 3’ position and strand, average support value over the junction k-mers,
detection by CRAC and by TopHat-fusion (THF).
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exons, as well as cases where the inversion is short,
sometimes inducing a repeat within the read (see an
example in the LONP1 gene given in Additional file 4).
Notably, among 455 chRNAs, CRAC reports 36

chRNAs that appear to recur in two, three, or even all
four breast cancer libraries (Additional file 5). Among
these 36 chRNAs: 24 are intra- and 12 are inter-chro-
mosomal, 20 are intragenic, while 16 fuse different
genes. Moreover, 35 out of 36 (including the MAN1A2
and LONP1 cases) harbor exactly the same junction
point in all libraries in which they were detected. Pre-
vious investigations of these libraries [16,27] did not
report any recurrent chRNAs. However, when we ran
TopHat-fusion, it also output 23 of these chRNAs
among 193,163 candidates.
For instance, we found a HSPD1-PNPLA4 chRNA in

both KPL-4 and SK-BR-3 libraries: PNPLA4 (GS2) is
highly expressed in human SW872 liposarcoma cells
[29], while HSPD1, the heat shock protein Hsp60, shows
a broad antiapoptotic function in cancer [30]. Among the
intragenic chRNAs, we observed in all four libraries a
non-colinear chRNA within GNAS, a gene coding for the
G-protein alpha subunit, which is known to be associated
with multiple human diseases including some cancers
[31], and was recently found to be recurrently mutated in
cystic pancreatic lesions related to invasive adenocarcino-
mas [32], as well as amplified in breast cancers [33].
Moreover, we also found the same CTDSPL2-HNRNPM
chimeric RNA in the BT-474, MCF-7, and SK-BR-3
libraries. Both genes belong to the heterogeneous nuclear
ribonucleoprotein family and play a pivotal role in pre-
mRNA processing. Importantly, HNRNPM regulates the
alternative splicing of carcinoembryonic antigen-related
cell adhesion molecule-1 (CEACAM1) in breast cancer
cells [34].

Discussion
CRAC is a multi-purpose tool for analyzing RNA-seq
data. In a single run it can predict sequencing errors,
small mutations, and normal and chimeric splice junc-
tions (collectively termed events). CRAC is not a pipeline,
but a single program that can replace a combination of
Bowtie, SAMtools, and TopHat/TopHat-fusion, and can
be viewed as an effort to simplify NGS analysis. CRAC is
not simply a mapper, since it uses local coverage infor-
mation (in the support profile) before computing the
genomic position of a read. In contrast to the current
paradigm, mapping and post inferences are not disjoint
steps in CRAC. Instead, it implements a novel, integrated
approach that draws inferences by simultaneously analyz-
ing both the genomic locations and the support of all
k-mers along the read. The support of a k-mer, defined
as the number of reads sharing it, approximates the local
read coverage without having the reads mapped. The

combined k-mers location and support profiles enable
CRAC to infer precisely the read and genomic positions
of an event, its structure, as well as to distinguish errors
from biological events. Integration is not only the key to
an accurate classification of reads (Additional file 1), but
it avoids information loss and saves re-computation, and
is thereby crucial for efficiency. Indeed, CRAC takes
more time than state-of-the-art mappers, but is consider-
ably faster than splice junction prediction tools (for
example, Bowtie plus TopHat). The other key to effi-
ciency is the double-indexing strategy: a classical FM-
index (where FM stands for Ferragina - Manzini) for the
genome and the Gk arrays for the reads [21]. This makes
CRAC’s memory requirement higher than that of other
tools, but fortunately computers equipped with 64 giga-
bytes of memory are widespread nowadays. Experiments
conducted on simulated data (where all answers are
known), which are necessary for assessing a method’s
sensitivity, have shown that for each type of prediction
CRAC is at least competitive or surpasses current tools
in terms of sensitivity, while it generally achieves better
precision. Moreover, CRAC’s performances further
improve when processing longer reads: for example on
200 nt reads, it has 85% sensitivity and 99.3% precision
for predicting splice junctions.
CRAC analyzes how the location and support profiles

vary and concord along the read. Hence k-mers serve as
seeds (in the genome and in the read set), and k is thus
a key parameter. Its choice depends on the genome
length [19], and quite conservative values - k = 22 for
the human genome - have been used in our experi-
ments. Smaller k values are possible with smaller gen-
omes (like bacterial ones). k affects the number of false
genomic locations (FLs) that occur in the profile; a FL
indicates a wrong location for a k-mer, which differs
from the location of origin of the sequenced molecule.
This tends to induce a false location for the read (map-
ping) or a false location for a junction border (normal
and chimeric junction prediction). However, CRAC uses
two criteria to avoid these pitfalls: the coherence of
locations for adjacent k-mers over a range and the con-
cordance of locations for the k-mers around the break
(especially in the break verification and fusion proce-
dures; see Additional File 2). When k-mers surrounding
the break have a few, but several, locations, CRAC exam-
ines all possible combinations, and as FL occurrences are
governed mainly by randomness, this eliminates discor-
dant positions. FLs have a larger effect on the prediction
of chimeras. Overall, the results on both simulated and
real data, like the improved mapping sensitivity (+15
points compared to Bowtie, BWA, and SOAP2), show
that CRAC makes accurate predictions with conservative
values. k controls the balance between sensitivity (shorter
seeds) and precision. The breast cancer libraries we used
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have 50 nt reads, but CRAC could still find 74% of the
chimeric RNAs validated by Edgren et al. [27]. Of course,
the k value has two limitations: first, the minimal exon
size detectable in a read is ≥k, second, reads must be long
enough (>40 nt with k = 20 for the human genome).
However, NGS is progressing towards longer reads,
which should become standard, and Figure 4c illustrates
well CRAC’s ability to detect short exons within single
reads. The k-mer profiling approach detects events
located near the read extremities, but cannot exactly
determine their position in the read. Hence the inference
rules cannot be fully applied, and CRAC classifies such
reads as incompletely determined (Undetermined and
BioUndetermined files). However, the position of an
event in a read is random, and thus, the high coverage
delivered by NGS nearly ensures that the same event
occurs in the middle of other reads covering it. Conse-
quently, border cases do not hinder CRAC from detecting
mutations, splice junctions, etc. Only errors escape this
rule since they are mostly read specific. A more complex
drawback of k-mer profiling is when two events are
located <k positions apart on the genome (see the
BCAS4-BCAS3 chimera); again such cases even with a
high support are not fully resolved and end up in the
BioUndetermined file. A post-processing of reads in this
file, for example by an alignment program, could clearly
save such cases. Obviously, such cases are rare, and we
keep this as future work. As briefly mentioned, k-mer
profiling also detects when reads span a repeat border
region, which should help in inferring the locations of
mobile genetic elements, duplications, or copy number
variations; this suggests further developments and
CRAC’s usefulness for analyzing genomic data.
Determining the correct genomic location of reads is

crucial information for any NGS data analysis and espe-
cially for cataloging all transcripts of a cell with RNA-
seq. Generally, a mapping step computes this informa-
tion using efficient, well-known tools (BWA, Bowtie,
and SOAP2), but the mapping sensitivity is rarely ques-
tioned. We performed extensive mapping tests on simu-
lated data, which showed that sensitivity can truly be
improved and that CRAC makes a significant step in
this direction. Of course by considering discontinuous
alignments (as do CRAC and GSNAP) many reads cov-
ering splice junctions can be mapped, which BWA,
Bowtie/Bowtie2, and SOAP2 cannot detect. However,
the mapping results for categories of reads carrying one
mutation, a short indel, or even errors indicate that clas-
sical mappers missed between 15 to 20 points in sensi-
tivity, thereby confirming that the difference due to
splice junction reads is critical even for other events,
while CRAC performs equally well (>90%) whatever the
category (Figure 2). The other way around, those tools
are able to map 10% to 35% of reads containing a splice

junction. This can negatively affect downstream analyses
depending on the type of events under investigation. For
instance to predict splice junctions, in the current strat-
egy (TopHat, MapSplice, or TopHat-fusion), reads are
first mapped with Bowtie to divide the collection into:
(a) reads having a continuous alignment on the genome
and (b) unmapped reads. The former serve further to
delimit exons, and the latter are then processed again to
search for spliced alignments. If a read that requires a
discontinuous alignment is mapped by Bowtie, it is not
considered by TopHat, MapSplice, or TopHat-fusion as
potentially containing a junction, and they will not find
a spliced alignment for it. In contrast, CRAC’s k-mer
profiling approach is flexible, reliable in this respect
(Figure 3), and importantly, adapts well to longer reads
(for example, 200 nt). This last point is key since longer
reads will be available soon. They will much more likely
incorporate not one, but several events - errors, muta-
tions, splice junctions, etc. - and thus be harder to map.
Whatever the class of required predictions, CRAC’s sen-
sitivity is always improved with longer reads. This is
crucial for detecting multiple exons within single reads,
and CRAC exhibits a better ability in this as exemplified
by a transcript of TIMM50 gene (Figure 4c).
An issue in transcriptomics is to reliably extract the com-

plete set of splice junctions with a minimal number of false
positives [24]. In this regard, our results (Table 2) demon-
strate that k-mer profiling approaches (MapSplice and
CRAC) profit greatly in sensitivity from longer reads, and
that CRAC is the tool with the highest precision whatever
the read length. They also indicate that CRAC handles dif-
ficult cases with higher sensitivity, like long-distance
splices, multi-exon reads, or RNA expressed at a low level.
The analysis of a multi-tissue library shows that CRAC,
GSNAP, and MapSplice have a very large (>90%) agree-
ment on the set of reported known junctions (>140,000
distinct junctions), RefSeq transcripts, and genes, thereby
providing evidence of their ability to extract splice junc-
tions of well-annotated transcripts (Figure 4b and 4a). In
contrast, TopHat misses 21% of these known RefSeq junc-
tions. Comparatively, CRAC reports fewer novel or
unknown junctions than other tools, and tends to be more
conservative, which likely reflects its precision. Altogether,
CRAC is a solution for exploring qualitatively the tran-
scriptome of a sample with high sensitivity and precision,
and thus provides the primary material for determining all
transcript structures, which is indispensable for estimating
the expression levels of all RNA isoforms [3,26].
Recent investigations have suggested that non-colinear

RNAs are quantitatively more abundant in human tran-
scriptomes than previously thought, underlining the struc-
tural diversity of these chimeric RNAs and their
occurrence in cancers [8,27,28,35,36]. Predicting chimeric
RNAs (chRNAs) is the most difficult and error-prone
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computation when analyzing RNA-seq. The combinatorial
possibilities of aligning a read partly to two distinct regions
on the same or different chromosomes [4] increase the
likeliness of predicting FPs. It explains why filtering for
suboptimal but colinear alignments of an apparent chi-
meric read may still help, and also partly why TopHat-
fusion per se yields so many more chRNA candidates
compared to CRAC (Table 4). Paired end reads are not
sufficient: analyzing single reads by splitting them is inevi-
table for predicting the chimeric junction point; hence k-
mer profiling also suits this purpose. Nevertheless, paired
end reads are useful for performing a complementary con-
solidation of chRNA candidates, which we may develop in
the future. However, chRNAs can occur at low expression
levels and be much less expressed than their parental
genes; this impels CRAC to rely less on the support profile
than for mutation prediction. In addition, transcriptional
noise or template switching during library preparation
may generate true chimeric reads from biologically irrele-
vant chRNAs. Thus, subsequent criteria are definitely
needed to prioritize chRNA candidates: the consistent
finding of the same junction point has been suggested as
an important one [27,36,37]. Notably, CRAC predicted for
the four breast cancer libraries 36 recurrent chRNAs that
were not reported previously [16,27], and 35/36 always
harbor the same junction point in the different libraries
and among the distinct reads predicting them. Several of
these involve genes known to be implicated in tumorigen-
esis or tumor maintenance, like GNAS [31] or HSPD1
[30]. As CRAC outputs also included 74% of validated
chRNAs with a single clear false negative, this shows that
CRAC consistently reports interesting chRNA candidates
based on the read data. As already mentioned, CRAC dis-
tinguishes between five chRNA classes, included those
exhibiting small-scale sequence inversions, as illustrated
by a chRNA within the LONP1 gene, which recurs in nor-
mal and tumoral libraries. We also reported cases of
chRNAs, which although validated, do not constitute good
candidates for the computational inference step, since not
enough reads in the data support their existence. The lat-
ter point is critical and strengthens how difficult chimeric
RNA prediction is.
Here, the in silico experiments focus on transcrip-

tomic data, but the method is also applicable to geno-
mic sequencing. For instance, the counterparts of splice
junctions and chimeras in RNA-seq are large deletions
and rearrangements (translocation, inversion, and displa-
cement of a mobile element) in DNA. Thus, CRAC may
also prove useful for genomic analyses.

Endnotes
a TopHat-fusion without the extra post-filtering script.

b If TopHat-fusion-post is applied to TopHat-fusion’s
results with default parameters, it reports 27 chimera,

11 of them being validated chimeras, which is about half
those reported by TopHat-fusion alone.

c Only intergenic chRNAs are counted here.
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Figure 1: Overview of the read classification performed by CRAC. CRAC processes each read in turn and
performs several predictions regarding its genomic locations, sequencing errors, the presence of mutations
(SNV, insertion, and deletion), as well as normal or chimeric splice junctions. For each question the read
can be assigned to one or several classes. Mapping: depending on the possible genomic locations of its
k-mers obtained from the FM-index, CRAC decides whether the read has a unique (unique), or either a few
(duplicated) or many genomic locations (multiple). When too many k-mers cannot be located the read is
considered as having no location (no loc). Break: when the k-mer location profile contains a break, the Gk
arrays are interrogated to analyze the support profile and decide whether it is due to a sequencing error or
a biological event. In each case, the profiles may still be ambiguous and the read is then classified as not
fully determined (undetermined or bio undetermined). Otherwise, according to the rules that distinguish
different events the read is assigned to the relevant categories (seq error, SNV, insertion, deletion, splice
or chimera).
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1 CRAC algorithm: details and real conditions
In the description of CRAC’s method, we first assumed simplifying conditions; now we explain
how the actual procedure deals with real conditions.

Differences with the genome at the read’s extremities (border cases). This aspect does not
influence CRAC’s algorithm; rather, the sequencing depth of NGS data saves border cases. In-
deed, the random fragmentation of molecules implies that a sequence difference will be uni-
formly located within the reads that cover these positions. The coverage ensures that these po-
sitions will likely be located in the middle of some other reads. Hence, if a biologicial event is
missed in some border case read, it will be detected in other reads if the transcript is not rare.
The results on simulated data illustrate well this situation. Reads with a difference near their ex-
tremities have a break lacking a start or an end (i.e. the location before or after the break cannot
be determined): this prevents CRAC from identifying the type of difference and from finding
its exact position in the read. As some characteristics of the difference are left undetermined,
the read is classified either as "undetermined" or "biologically undetermined" depending on its
support profile.

Genomic repeats Many reads are sequenced from repeated genomic regions. This translates
in k-mers having multiple genomic locations. However, these locations are globally coherent.
If a majority of located k-mers (> 80%) are in this case, CRAC classifies reads as duplicated
(≤ 5 matching locations) or repeated (> 5 locations). To apply Rule 1, CRAC needs to check the
concordance of locations on each side of the break. When processing entirely or partly duplicated
reads (not repeated ones), CRAC searches systematically each combination of locations and
privileges coherent and concordant ones to reduce the risk of false inferences.

1



False locations (FL) Our criterion to set k ensures a low average probability of a random k-mer
match on the genome [1], but it does not prevent random match, which we term false locations
(FL). Compared to true (unique or multiple) locations, the FL of a k-mer will generally not be
coherent with those of neighboring k-mers. It may also alter the break length in an unexpected
manner: another criterion of verification (see Rule 1). When a read matches the genome, CRAC
considers ranges of k-mers having coherent locations to infer its true genomic position. In case
of a break in the location profile, CRAC faces two difficulties. First, when a FL happens at a
border of a break, it may lead to an incorrect border. When a FL occurs inside a break, it makes
up adjacent false breaks, termed mirage breaks. In both cases, if the FL is considered true, as it
likely disagrees with the location of the other break border, it leads to avoid Rule 1, apply Rule 2,
and to predict a false chimeric read. To handle FL at a break border, CRAC uses when necessary
a break verification procedure, which checks the coherence of locations in the range [ jb −δ, jb]
(resp. [ ja, ja + δ]), the concordance of locations across the break, and the break length. This
leads to discard the FL and identify the correct borders. Note that verifying the coherence of
locations over δ consecutive k-mers is equivalent to considering a single k+δ-mer and therefore
diminishes the probability of FL. To detect and remove mirage breaks, CRAC applies a break
fusion procedure. It checks the concordance of locations across each break, and also across
a fused break, i.e. looking whether locations before the first break agree with those after the
second break. This procedure, which handles duplicated locations by searching for all possible
combinations, favors solutions with one or two breaks that avoids predicting chimeric reads.

Multiple differences When a read is affected by several differences (i.e. events e.g., a sub-
sitution and a splice junction), two cases arise. Either these are k nucleotides apart, then two
distinct breaks are found in the location profile (after verification and possible fusion to filter
out false locations). Most of the time, k-mers locations across each break and across the two
breaks are concordant, and CRAC detects two events. When the differences are too near (< k
nucleotides, which is less likely), a single break of unexpected length is found, and it hinders
the precise inference of the types and positions of the differences (although the support analysis
can still distinguish an error from biological event). Such reads are flagged as having a too large
break, hiding several events, and are classified as "undetermined" or "biologically undetermined"
depending on the support variation. A notable exception is the case of two substitutions, where
we have L = ` > k and `− k gives the distance between the two substitutions.

Rare splice junctions We mentioned that when the support is too low, the read is classified
as "undetermined" because we cannot determine whether we are facing a sequencing error or a
biological event. The situation is easier for splice junction, for it is unlikely that a sequencing
error consists of a large insertion. Hence, when we detect a large insertion (given by the break
type) with low support, we can confidently flag the read as being a "weak splice". This par-
ticularly highlights the need for integrating support analysis, with mapping and indel detection.
Considering at once those informations enables CRAC to detect rare splices in a sample.
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2 Simulation of RNA-seq data
To evaluate the sensitivity and precision of mapping programs and of tools for SNV, splice
junction, or chimera predictions, we have produced benchmarks of simulated data for various
genomes, read lengths, and amounts of sequencing. Using the program FluxSimulator, one
can simulate RNA-sequencing from an annotated genome and control, through parameters, the
length and number of reads, the amount of sequencing errors, and expression levels of anno-
tated transcripts. However, this incorporates neither genetic mutations (substitutions and indels),
nor translocations that make the sampled genome different from the reference genome used for
mapping. Translocations are important for they occur in cancer cells and generate chimeric
RNAs, which CRAC aims at predicting. To fill this gap, we developed a complementary tool
to FluxSimulator called GenomeSimulator, which generates from the input reference genome,
a mutated genome that is altered by random mutations and translocations. This program yields
a mutated genome with modified annotations and the list of all alterations with their positions
compared to the original reference. These files are stored and given to FluxSimulator, which then
generates RNA-seq reads. Our system records all biological and erroneous differences compared
to the reference, their exact positions on it and in the simulated reads, to allow the verification of
mapping and prediction results.

Our goal is to compare several tools on their sensitivity and precision of predictions on RNA-
seq data. With RNA-seq data, both events occuring at the genomic (single point mutations,
indels, translocations) and at the transcriptomic levels (splicing events) are amenable to detec-
tion. Thus, to mirror real conditions our simulation protocol must incorporate the fact that the
individual genome whose transcriptome is assayed differs from the reference genome the reads
will be aligned to. The simulation procedure comprises two steps (Figure 1): 1/ a genome al-
teration step, in which the reference genome is randomly modified to account for individual
genetic differences, 2/ a RNA-seq simulation step, where randomly chosen annotated genes are
expressed and sequenced to yield reads. In the end, the simulation delivers a read collection and
files recording the positions of genomic mutations, splice sites, chimeric junctions, in the reads
and on the reference genome. One difficulty is to link the genomic alterations on the simulated
reads in terms of positions on the reference genome.

To perform the RNA-seq simulation (step 2) we used the program FluxSimulator [2], which
decomposes the simulation in gene expression, library construction and sequencing, and incor-
portates their systematic biases. However, for simulating an altered genome (step 1), we de-
veloped our own program that ensures an easy interconnection with FluxSimulator. Here, we
provide a short overview of these computational simulation steps.

2.1 The genome simulation
This procedure modifies the sequence of the input reference genome by introducing random point
mutations (SNV), insertions and deletions (or indels), as well as translocations. Substitutions and
indels are introduced at random genomic locations at rates chosen by the user. By default, one
every 1,000 nucleotides will be substituted (a rate of 0.1%), while at 1/10,000 positions, an indel
will be introduced (a rate of 0.01%). At a substituted position, the new nucleotide is chosen at
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Figure 1: Overview of the simulation and analysis protocol. To generate a RNA-seq dataset,
the Reference genome is first mutated by the Genome Simulator (step 1), the modified genome
and annotations are input into the RNA-seq simulator (Flux Simulator step 2), which yields a
collection of RNA-seq reads. This dataset is then analyzed by any desired tool (step 3). Its
results can be confronted to the true errors, mutations, splice sites, chimeras, and its sensitivity
and precision evaluated for each of these predictions.

random with equal probability among the three other possibilities. For indels, the length is
chosen uniformly within a range [1,15[ nucleotides and the inserted sequence chosen randomly.
Regarding translocations, whose goal is to generate gene fusions, the exchanged chromosomal
locations are chosen within annotated genes. The genome simulator takes a gene annotation file
as input to get the positions of all exons. For a translocation, two genes are chosen at random
with an input probability, for each gene a breakpoint is chosen at random within its intronic
regions, then we perform a bidirectional exchange of the start of one gene with that of the other
gene, thereby creating two chimeric, or fusion genes. One starts with the sequence of gene 1
and ends with that of gene 2, and conversely. Exons are never splitted by this process, as we
hypothesized that fusion genes with disrupted exons are counterselected by evolution. For the
sake of simplicity, the simulator generates chimeras on the forward strand only. RNA-seq reads
covering the fused genes will expressed chimeric RNAs; it is worth noting that both fused genes
generated by a translocation are, as any other gene, not necessarily expressed, nor covered by
reads.

2.2 The RNA sequencing simulation
FluxSimulator provides a RNA-seq simulation that includes all steps impacting the final reads:
gene expression, library preparation, and sequencing. Besides the parameters, the input consists
in a transcript annotation file in GFF format, which allows FluxSimulator to generate alterna-
tively spliced RNAs for any single gene. We provided FluxSimulator with the RefSeq transcripts
from the chosen species as extracted from Ensembl [3]. Another key parameter for testing read
analysis tools is the sequencing error model. For substitutions, we used an error model issued
from an analysis of the Illumina R© sequencing technology with 75 nt reads [4] and we extrapo-
lated this model for 200 nt long reads. In this model, indels are short (in the range [1,5] nt) and
their probabilities are much lower than that of substitutions. We also controlled the read length
and the read numbers, and asked for single read sequencing only. We set up the parameters to
obtain distributions of expression levels similar to that of real experiments [5] (see the RPKM
graph for the Human datasets in Figure 2).

Detailed explanations on FluxSimulator parameters are available at http://fluxcapacitor.
wikidot.com/simulator.
Sammeth, M., Lacroix, V., Ribeca, P., Guigó, R. The FLUX Simulator. http://flux.sammeth.
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Name Species Number of reads Read length
in million in nt

hs-75 Human 42 75
hs-200 Human 48 200
dm-75 Drosophila melanogaster 45 75

dm-200 Drosophila melanogaster 48 200

Table 1: Simulated RNA-seq data-sets

net http://flux.sammeth.net/simulator.html
Of course, the simulated RNA-seq reads cover neither the whole sampled genome, nor all

genes. Only "expressed" genes will have reads associated with their transcripts. Hence, some
genomic mutations produced by the genome simulator will not be covered by any reads in fine.
When describing the datasets, we indicate how many events of one categories has been seen
by some reads. Intermediate scripts compute the positions and nature of all events (error, SNV,
indels, normal and chimeric splice junctions) in the genome and all reads, so as to enable a
precise evaluation of all predictions.

3 Simulated RNA-seq datasets
Here, we describe the simulated RNA-seq datasets used for comparing various tools (Table 1),
and provide the numbers of alterations generated in each simulated genome, as well as those that
are visible in the final RNA-seq reads (Table 2 and 3)

Type SNV Insertion Deletion Chimera

Genome-wide 3,139,937 287,336 287,502 1,002
Sequenced (75bp) 29,084 2,687 2,734 647

Sequenced (200bp) 52,971 4,810 4,901 914

Table 2: Number of mutations randomly generated in the simulated Human genome, and the
numbers among those that were effectively sequenced in the Human simulated RNA-seq datasets
from Table 1.

4 Tools used for comparison: version and parameters
We compared CRAC with other tools on its ability to map reads, to identify splice sites, to
identify chimeric RNAs. The table 4 lists the software we used, their version, and parameters.
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Type SNV Insertion Deletion Chimera

Genome-wide 132,193 12,146 12,168 676
Sequenced (75bp) 28,397 2,512 2,644 651

Sequenced (200bp) 30,549 2,698 2,861 668

Table 3: Number of mutations randomly generated in the simulated drosophila genome, and
numbers of those that were effectively sequenced in the Drosophila simulated RNA-seq datasets
from Table 1.

Figure 2: Distribution of log2(RPKM) for simulated Hu-
man data sets: simulatedHuman75nt-42M (in red) and
simulatedHuman200nt-48M (in blue).
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5 Score analysis to discriminate between sequence error and
biological events

When CRAC analyzes a read, it needs to distinguish sequence errors from biological events
using the support profile. Here, we detail the method we employed to derive a discrimination
function that performs this distinction in the program. For this sake, we used a machine learning
technique, called Support Vector Machines (SVM), which belongs to supervised classification
approaches. Two SVMs were trained using simulated data for distinguishing: 1/ errors from
mutations, 2/ errors from splice junctions. We explained how this was done in the first case; the
same method has been used for the second.

Let us denote by f the discrimination function we want to learn. To do this, we use i/ the
support profile (described in Algorithm section of the MS - section ) to define two variables
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Tool Version Parameters
Bowtie 0.12.7 –end-to-end –very-sensitive -k 2
Bowtie2 2.0.2 –best -n 3 -y -t -k 2
BWA 0.5.9
BWA-SW 0.5.9 -b 5 -q2 -r1 -z10
CRAC 1.0.0 -k 22 -m 75
GASSST (short) 1.27 -w 18 -p 94 -s 3 -g 4
GASSST (long) 1.27 -w 18 -p 89 -s 3 -g 9
SOAP2 2.20
GSNAP 2011-03-28 -N 1 –novel-doublesplices
MapSplice 1.15 –fusion -L 22
TopHat 1.2.0
TopHat2 2.0.6 –b2-very-sensitive –fusion-search
TopHat-fusion 0.1.0 (BETA)

Table 4: Parameters used for launching the tools. For CRAC, the -m parameter corresponds to
the read length and is set according to the read set.

Sin and Sout of f , ii/ the simulated dataset (described Supplementary Section 2) to separate two
labelled classes: “errors” and “biological events”, iii/ a technique of supervised classification to
compute f .

Support profile in a break As explained in the article, CRAC proceeds each read in turn and
computes its k-mers location profile and k-mer support profile. Both a sequence error or a bio-
logical mutation (eg, substitution or indel) constitute a difference in sequence between the read
and the genome, and consequently, both generate a break in the location profile. (see Figure 1a in
the MS). To determine whether the source of this event is biological or erroneous, we must focus
on the support profile (see Figure 1b). We compute two values: the average of the k-mers sup-
port outside the break, denoted by Sout , and the average of the k-mers support inside the break,
denoted by Sin. The goal is to compare Sin and Sout with the following hypothesis: most reads
that cover a biological event share the mutation, whereas an error occurs in a small number of
reads.

Two labelled classes: “errors” and “biological events” On one hand, from the simulation
protocol (supplementary section 2), we know which reads are affected by an error and which
reads are affected by a biological event. On the other hand, using CRAC on simulated dataset
(supplementary section 3), we can extract reads affected by an event by searching all breaks.
As we know the answer for each event, we can define two labelled classes “errors” or “biolog-
ical events” and save all pairs (Sout ,Sin) for each class (one corresponding to sequence errors
coordinates and the other corresponding to biological events coordinates).
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Design of the separation To discriminate between the two classes, we use a technique of su-
pervised classification called Support Vector Machines (SVM) [6]. It is a learning procedure that
tries to find a discrimination function; this function can then be used to assign a new observation
to the labelled classes. Here, we want to separate all pairs (Sout ,Sin) for the two labelled classes
“errors” and “biological events” according to a function f defined by f (Sout) = Sin. We used a
SVM implementation in the R language (the package can be found at http://www.duclert.
org/Aide-memoire-R/Apprentissage/SVM.php) with parameters set to:

mode=CLASSIFY, kernel=POLYNOMIAL, degree=1/3
to separate the two different vectors. Note that we used a polynomial kernel because the predicted
separation was found to be a curve. We have only designed the function on the dataset hs-75 and
we used the same for all dataset. In hs-75, we used an error model issued from an analysis of
the Illumina R© sequencing technology with real 75 nt reads [4] (see supplementary section 2.2).
The function f computed by SVM to discriminate between sequence error and biological events
(substitution or short indel) is the following:

f (Sout) =−2.40850+2.15859×S
1
3
out +0.15670×S

5
6
out (1)

Because a sequence error affects only a few nucleotides in a read, it can be easily distin-
guished from a splicing event (junction exon/intron) also characterized by a break. The predicted
separation between sequence errors and splice events was found to be a different, less stringent
curve. Thus, we decided to learn another specific SVM for splice junctions events with param-
eters set to (mode=CLASSIFY, kernel=POLYNOMIAL, degree=1/2). The function g computed
by SVM to discriminate between sequence error and splicing events is:

g(Sout) = 0.51081+0.16758×S
1
2
out (2)

Classification We can define several statistics:

TP: the true positives, i.e. the proportion of biological events which are classified correctly

FP: the false positives, i.e. the proportion of biological events which are misclassified

TN: the true negatives, i.e. the proportion of sequence errors events which are classified cor-
rectly

FN: the false negatives, i.e. the proportion of sequence errors events which are misclassified

Figure 3 illustrates the distribution of all points (Sout ,Sin) for the two simulated Human
datasets hs-75 and hs-200 (described in section 3). The black curves in Figure 3 (A) and Fig-
ure 3 (B) show the separations between errors and biological events calculated with SVM. Note
that in case of sequence errors, we have a drop in the support profile (section ) so it is natural that
sequence errors are found under the curve. We visualize the formation of two separate clouds on
each side of the curve (in both figures 3): TP (blue dots above the curve) and TN (blue dots below
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Figure 3: Computation of the separation between sequence errors and biological events for two
read datasets: hs-75 (A) et hs-200 (B). Each point illustrates an event which is define in CRAC
algorithm by a break. Sout is the average of the k-mers support outside the break and Sin is
the the average of the k-mers support inside the break. The black curve is the separation, and
was computed using a SVM approach. The red dots are misclassified points: FP are below the
separation and the FN are above the separation. The blue points are well classified points: TP
are above the separation and TN are below the separation.
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the curve). On the contrary, the red dots represent the events that are misclassified: respectively
FP for biological events and the FN for sequence errors. We can observe between the two clouds
a mixture of blue dots and red dots that form an ambiguous zone where errors and biological
events are indistinguishable.

However, our goal is to increase the precision in “biological events” class, i.e. to avoid
sequence errors to be detected as biological events. In order to minimize the number of false
positives in biological events, we used in the SVM model a variable precision parameter to
increase precision for “biological events” class. We set that parameter with a probability of 0.98
even if in return it increases the number of FN for the class “errors”.

Score in CRAC We establish a score for each event and for each break, using (Sin,Sout) . We
compute f (Sout) and the vertical distance relatively to the separation d = Sin − f (Sout). Accord-
ingly, we consider a sequence error when d ≤ 0 and a biological event when d > 0. Indeed,
a point which is close to the separation is less likely to be valid than a remote point. For ex-
ample, a point with a S1out = 2.6 and S1in = 1.5 has a low score of 0.59 (S1in − f (S1out) =

1.5− (−2.40850+ 2.15859× 2.6
1
3 + 0.15670× 2.6

5
6 ) = 1.5− 0.91). On the contrary, a point

with a S2out = 26 and S2in = 25 will have a score of 23.85.
We see in Table 1 that CRAC has a better sensitivity in hs-200 while reads are longer (sec-

tion ), i.e. we find more errors and biological events. We can observe in Figure 3 more true
positives in hs-200 than in hs-75 (blue dots above the curve). Because we have increased the
variable precision parameter for the biological class, we can see in Figure 3 (A) and (B) that
there are more FN than FP. In other words, TP, TN and FP are still the same between hs-75 and
hs-200 (blue dots of each side and red dots above the curves) but not FN (red dots below the
curve (B) ). The results in Table 1 validate our approach because the precision of CRAC remains
the same for hs-75 and hs-200.

In conclusion, we defined two functions: i/ one to distinguish sequence errors from point
mutations (substitutions, short indels); ii/ another to discriminate splicing events in gray zone
from the non-ambiguous zone. We have explained before how we design the function for i/ but
the approach is the same for ii/.

6 Partition of chimeric RNAs
CRAC predicts candidate chimeric RNAs. These are splice junctions in which the 5’ and 3’
"exons" are either 1/ not located one after the other on the same chromosomal strand, these are
said to be non colinear, or 2/ are too far apart on the chromosome to belong to the same gene.
Obviously, the second case can only be determined by looking at annotations, which we forbid
in CRAC. Without annotation, the decision between a splice inside one gene or across two genes
is made arbitrarily depending on the distance on the chromosome. For simplicity, we use the
term "exon" although the transcribed region may be located outside a known gene, in an intron,
in antisense of a gene. By exon, we mean an unspliced part of the RNA.
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CRAC further partitions all chRNA in five classes depending on the exon organization; this
partition resembles that depicted in [7, Figure 1]. The five classes are as follows:

1. The exons are located on different chromosomes

2. The exons are colinear but (likely) belong to different genes; this must be checked with
annotation.

3. The exons are on the same chromosome and same strand, but not in the order in which
they are found on DNA, and they do not overlap each other.

4. The exons are on the same chromosome but on different strands.

5. Exactly as in class 3, but the exons overlap each other by at least one nucleotide.

In class 1, the splicing joins pieces from distinct chromosomes, while in classes 2−5 the exons
are on the same chromosome. In summary, class 2 is the only colinear case.

We create class 5 to distinguish cases truely due to large scale inversions (class 3) from those
likely due to local inversions or repeats inside genes. When analyzing the breast cancer libraries,
we found many such cases.

To investigate more closely these candidates, we confront them to Ensembl annotations [3]
and could determine whether the involved "exons" are in annotated exons, introns, or outside
genes.
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1 Results on Drosophila simulated RNA-seq data
All analyses were performed on sets of Human and Drosophila simulated RNA-seq data to assess
the impact of the reference genome. Results on Human data are presented in the manuscript,
while all pendant results on Drosophila datasets are given here. Although Drosophila and Human
genomes differ in length, gene density as well as in number of short introns, the results are similar
between the two species for mapping, splice junction or chimeric RNA predictions.

Mapping Figure 1 compares the sensitivity and precision of mapping between Bowtie, BWA
/ BWA-SW, CRAC, GASSST, GSNAP and SOAP2 [1, 2, 3, 4, 5]. The version and parameters
used for these programs are given in Additional File 2. As for Human data, the percentages
of uncorrectly mapped reads (in red) are almost invisible except for BWA-SW on 200 nt reads,
meaning that almost all output genomic locations are correct. However, the difference in sen-
sitivity remains and shows that CRAC exhibits both high sensitivity and precision. Again, its
behavior improves with longer reads.
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Figure 1: Comparison of sensitivity and precision on simulated RNA-seq against the drosophila
genome for (A) simulatedDroso75nt-45M and (B) simulatedDroso200nt-48M.
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Normal and chimeric splice junctions detection. Table 1 shows the sensitivity and precision
of splice junction prediction on D. melanogaster simulated data. CRAC is compared to TopHat,
MapSplice, and GSNAP [6, 7, 8]. Again CRAC is highly sensitive, even if TopHat achieves
between +2 to +4 points in sensitivity, but CRAC remains the most precise among all tools. For
instance, TopHat yields 10 to 20 times more false positive junctions than CRAC.

Table 1: Sensitivity and precision of detection of splices among different softwares. TP is the
number of true positives and FP the number of false positives.

75bp 200bp
Tool Sensitivity Precision TP FP Sensitivity Precision TP FP

CRAC 87.31 99.78 39,637 84 91.15 99.59 42,835 178
GSNAP 80.67 99.05 36,623 350 79.7 98.8 37,453 454
MapSplice 86.19 99.54 39,127 182 89.31 99.42 41,971 244
TopHat 91.04 95.94 41,329 1,749 93.89 94.93 44,123 2,354

Table 2 shows the sensitivity and precision of chimeric junction prediction on D. melanogaster
simulated data. CRAC is compared to MapSplice [7], TopHat-fusion [9], and TopHat-fusion-
Post (i.e., TopHat-fusion followed by a post-processing script).

Here, both CRAC and TopHat-fusion achieve better sensitivity than on Human data. How-
ever, CRAC reaches much higher precision than any other tool, at the exception of TopHat-
fusion-Post which has 100% precision but delivers only 2 candidate chimeric junctions, that is
< 1% sensitivity.

Table 2: Sensitivity and precision of detection of chimera among different softwares. TP is the
number of true positives and FP the number of false positives.

75bp 200bp
Tool Sensitivity Precision TP FP Sensitivity Precision TP FP

CRAC 75.94 99.8 1,069 2 68.29 99.1 1,217 11
MapSplice 3.63 36.45 51 89 3.2 0.19 57 29,784
TopHatFusion 82.35 47.13 1,157 1,298
TopHatFusionPost 0.14 100 2 0
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2 Additional results on Human simulated RNA-seq data

2.1 Comparison of 11 vs 42 million reads
We assessed the impact on mapping results of the size of the dataset in terms of number of reads,
and hence of coverage. We performed the same analysis with a subset of 11 million reads and
with the whole set of 42 million reads. The read length is 75 nt. The results for each set and for
all tools are displayed in Figure 2 (A) for 11 millions and (B) for 42 millions reads. The impact is
negligible, except for BWA that yields more false locations (small red bar on top of the blue one
in A) with the medium size set (96.28 vs 99.13%). Especially, CRAC sensitivity and precision
are not impacted by the number of reads, although this number changes the support values. For
comparison, as shown in the manuscript, using longer reads impacts much deeply all mapping
tools (Figure 3 in the MS).

2.2 Comparison of running times and memory usages
We give in Table 3 the running times and memory usages observed for mapping and splice
junction prediction with various programs for processing the 42 million of 75 nt reads (Human
simulated data). Times can be in days (d), hours (h) or even minutes (m), while the amount of
main memory is given in Gigabytes (Gb). Although CRAC performs several prediction tasks -
for point mutations, indels, splice junction and chimeric RNAs - its running time is longer than
those of mapping tools and shorter than those of splice junction prediction tools. Its memory
consumption is larger due to the use of a read index, the Gk arrays. This index is indispensable
to query the support profile of each read on the fly.

Programs Bowtie BWA GASSST SOAP2 CRAC GSNAP MapSplice TopHat
Time (dhm) 7h 6h 5h 40m 9h 2d 4h 12h
Memory (Gb) 3 2 43 5 38 5 3 2

Table 3: Running times and memory usages observed for mapping or splice junction prediction
with various programs.

3 Cases of failures
For some simulated datasets, we experienced failures while running other tools in our compar-
isons, as mentioned in the Results of the article. For instance, TopHat-fusion did not deliver
results on the 200 nt read datasets [9]. TopHat-fusion was unable to process the 200 nt simulated
reads for a yet unknown reason. On that input, TopHat-fusion ran during about one month, while
still filling temporary files but it stopped without any error message. We tried a few times and
always obtained the same results. Finally, we contacted TopHat-fusion’s contributors twice via
their mailing list, but did not obtain any reply.
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1 The real RNA-seq data sets
Five distinct Human RNA-seq datasets were used for assessing the capacity of predicting splice
junctions and chimeric RNAs from CRAC and other tools. The main characteristics of these data
sets are summarized in Table 1. The first four lines are breast cancer libraries sequenced using
unstranded paired-end RNA-seq from Edgren et al. [1]. The last line, ERR030856, corresponds
to a normal multi-tissue library sequenced using stranded RNA-seq.

Data source Library Read type Fragment
length

Read
length

Number of
fragments
(or reads)

Breast
cancer
libraries [1]

BT474 Paired 100-200 50 21,423,697
SKBR3 Paired 100-200 50 18,140,246
KPL4 Paired 100 50 6,796,443
MCF7 Paired 100 50 8,409,785

ERR030856 16 nor-
mal tissue
mixtures

Single - 100 75,000,000

Table 1: Real Human RNA-seq data used to compare splice and chimeras detection tools: four
breast cancer libraries of [1] of unoriented 50 nt reads, sequenced with 1G Illumina Genome
Analyzer 2X, and accessible at NCBI Sequence Read Archive [SRA:SRP003186]; one collec-
tion of 100 nt oriented reads sequenced with HiSeq 2000 Illumina R© from 16 normal tissues
mixtures from 11 adult individuals of widespread ages ([19;86]) from Experiment E-MTAB-513
of Illumina bodyMap2 transcriptome (see details at http://www.ebi.ac.uk/arrayexpress/
experiments/E-MTAB-513; this collection is accessible at http://trace.ddbj.nig.ac.jp/
DRASearch/experiment?acc=ERX011226.
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The tools, versions and parameters used for the comparison in all analyses are given in Table 4
of Additional File 2.

2 Predicting splice junctions on real RNA-seq data
Four programs, CRAC, TopHat, GSNAP, and MapSplice were launched to predict splice junc-
tions on a data set of 75 million stranded 100 nt reads (ERR30856). Splice junctions were then
confronted to Human RefSeq transcripts to determine whether positions found coincide with
start/end of known RefSeq exons. Found junctions were partitioned into known, new and other
junctions (see the main manuscript for a definition). We determined the intersections between the
set of predicted junctions for any combination of tools. The agreement, i.e. the size of these in-
tersections, are displayed in the form of Venn diagrams. These plots were obtained using Venny
at http://bioinfogp.cnb.csic.es/tools/venny/index.html.

Figures 1 and 2 show the agreement between the predictions of each tool respectively on
novel junctions, and on multi-exon RefSeq transcript for which at least one known or novel
splice junction was detected.

Figure 1: Venn diagram showing the agreement among tools on known junctions using known
RefSeq transcripts on the ERR030856 Human dataset.

2.1 Identifying reads covering small exons
Thanks to its k-mer profiling approach, CRAC can detect reads that covers multiple adjacent
splice junctions in the same transcript, and therefore includes entirely some small exons. CRAC
identifies several breaks in the location profile of such reads and determines the donor and accep-
tor genomic positions of each junction. An example of read that covers two adjacent junctions

2
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Figure 2: Venn diagram showing the agreement among tools on new splice junctions using
known RefSeq exons on the ERR030856 Human dataset.

Figure 3: A read spanning three exons and two splice junctions of human Calmodulin 2
(CALM2) gene. This graphical view was obtained from the UCSC genome browser.

and incorporates a 29 nt exon of the Human calmodulin 2 gene (CALM2) is illustrated in Figure3
as viewed in the UCSC genome browser at http://genome.ucsc.edu/cgi-bin/hgTracks?
org=human.

2.2 Agreement on splice junctions found by CRAC, TopHat, GSNAP, and
MapSplice on the ERR030856 library

We predicted splice junctions on the ERR030856 library with each of CRAC, GSNAP, Map-
Splice, and TopHat (see Results in the main manuscript). First, we investigated the agreement
between these four tools on Known Junctions (KJ) in the tables 3 and 2. Table 3 gives the num-
ber of junctions reported by each tool, as well as percentages of junctions in the intersection
of all four tools, or among the three tools that perform best on this dataset (CRAC, GSNAP,
MapSplice). As commented in the manuscript, we observed a large agreement among them. For
more details, we also computed the numbers and percentages of KJ that are specific to each tool,

3
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CRAC GSNAP MapSplice TopHat
Total 142,000 144,180 140,876 116,687
Shared % 97.41 97.53 99.42 98.83
Shared C-G-M % 89 87 89 NA
Shared all % 72 70 72 87

Table 2: Agreement on Known Junctions (KJ) predicted on library ERR030856 by four tools.
Total: number of reported KJ. Shared %: percentage of KJ shared with at least one other tool.
Shared C-G-M: percentage of KJ shared by CRAC, GSNAP, MapSplice. NA: not applicable.
Shared all: percentage of KJ shared with all three other tools. For each tool, > 97% of the KJ
it finds are also predicted by one other program. The agreement on well annotated junctions is
larger among CRAC, GSNAP, MapSplice, than with TopHat; this is explained by the fact that
TopHat finds ' 25,000 splice junctions less than the other tools.

or in the intersection of any combination of tools; see Table 2.
Finally, we computed the percentage of known junctions found by CRAC that are also re-

ported by the other tools. We then focused on i/ reads covering entirely small exons and ii/ KJ
with a large intron reported by CRAC. We computed for each category, how many items the
other tools were able to report. Results are displayed in Table 4, where we also calculated the
probability that a given tool found that many reads/junctions or less. The probability is computed
assuming a binomial distribution and therefore assuming that the category considered represents
a random sample of known junctions.

2.3 Further investigations on junctions
If the four tools show a good agreement on known junctions, it is less the case with new junctions
and other junctions. Regarding other junctions, we cannot rely on RefSeq annotations to infer
canonical junctions that would easily be comparable among the four tools.

To circumvent those problems, we performed another experiment that should give more in-
sights on the predictions made by the four tools. We used the predictions made by the four tools
to extract a genomic sequence of 25 nt upstream and 25 nt downstream of the junction. The 50 nt
sequence is then Blasted against both the human mRNA refseq 2 and the human ESTs 3. Blastn
was launched using the following options -F F -W 15 -a3 -G 5 -E 3 -e 0.001 -w -1 -B
1. For obvious reasons, there are much more hits on the ESTs than on mRNA RefSeq. Therefore
in the following we only report hits on ESTs. Good hits, with low E-values (≤ 10−15), witness
the fact that a predicted junction is found with high confidence, (almost) exactly on existing
ESTs. Good hits should be taken as additional evidence rather than as a guarantee of the exis-
tence of this junction. On the other hand, in hits with high E-values (≥ 10−10), only one half of

2Recovered using homo sapiens[organism] AND mrna [Filter] AND refseq [Filter] on http://
www.ncbi.nlm.nih.gov/nuccore.

3Recovered from http://www.ncbi.nlm.nih.gov/nucest/?term=homosapiens[organism] and filtered
out identical sequences resulting in 8,469,118 distinct sequences.
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CRAC GSNAP MapSplice TopHat
Agreement with CRAC % 100 93 93 76
Reads covering two KJ 9,817 8,338 9,167 7,496
Probability 9.61×10−178 0.972 0.374
Reads covering three KJ 89 34 78 52
Probability 2.36×10−41 5.09×10−2 1.20×10−4

KJ with intron ≥ 100 Knt 752 695 589 1 470
Probability 0.212 2.06×10−3 6.46×10−18

Table 4: Finding read covering multiple Known splice Junctions (KJ) and KJ with large introns.
Ratio of KJ found by CRAC and also reported by the other tool. In the prediction of CRAC, we
consider first the reads that cover two or three KJ (such reads include entirely one or more exons),
and then KJ with large introns. Among the reads, respectively KJ, found by CRAC, we computed
how much are also reported by the tool in that column, as well as the probability that it finds that
many reads or less, according to its global agreement with CRAC. The probability says if the
tool does at least as good at finding such reads/junctions as one would expect given its agreement
with CRAC. For most of the category, GSNAP, MapSplice, and TopHat find less reads/junctions
than CRAC. However, e.g. MapSplice and TopHat find about as much reads covering 2 exons as
expected “by chance” (p > 0.05), while GSNAP finds significantly less than expected. All tools
find less than expected reads covering three junctions, while MapSplice, and TopHat find less KJ
with large introns than expected.

MapSplice, due to the default parameters, was not able to report junctions with an intron ≥ 200 knt. In the
probability calculation we therefore removed 96 junctions reported by CRAC, that have such a large intron.
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CRAC GSNAP MapSlice TopHat All but CRAC
Aligned 115 704 258 131 1 056
Percentage aligned 48 % 34 % 40 % 40 % 40 %

Table 5: Absolute and relative numbers of new junctions only predicted by CRAC, GSNAP,
MapSplice or TopHat that were aligned to human ESTs with an E-value ≤ 10−15 or junctions
that where predicted by all tools but CRAC.

CRAC GSNAP MapSlice TopHat
Aligned 11 395 15 975 13 907 11 579
Percentage aligned 69 % 47 % 50 % 44 %

Table 6: Absolute and relative numbers of other junctions predicted by CRAC, GSNAP, Map-
Splice or TopHat that were aligned to human ESTs with an E-value ≤ 10−15.

the junction has been aligned. Such hits demonstrate that the predicted junction was not seen in
the whole collection of human ESTs, and are therefore likely to be false positives.

2.3.1 Blasting specific new junctions

Since there exists a discrepancy among the predictions of new junctions, we started by blasting
them. More specifically, we focus on junctions that are detected by only one tool. Since the
intersection between GSNAP, MapSplice and TopHat is the largest one, we also take into account
junctions from that set.

CRAC yields less new junctions that are specific to it compared to GSNAP or MapSplice, but,
as can be seen in Table 5, CRAC is more accurate than concurrent methods. Predictions made
by the other tools are slightly less reliable than CRAC’s. On the other hand, CRAC delivers less
predicted junctions of that specific category than the other tools. For reasons explaining that, see
section 2.4.

2.3.2 Blasting other junctions

We also reproduced the experiment on the sets of other junctions of each tool. We also focus
on high quality hits having an E-value lower than or equal to 10−15. The results are presented
in Table 6. We observe that GSNAP and MapSplice have the highest number of high quality
alignments, while CRAC has the highest proportion.

2.3.3 Blasting all junctions

Since the separation between known, new and other junctions is somehow arbitrary, and is rel-
ative to RefSeq, it is also interesting to consider all junctions predicted by a tool altogether to
assess each tool’s performance. As a summary we made two plots, in Figure 4. We notice that
GSNAP predicts more high quality hits (159,702), followed by MapSplice (152,957), followed
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Figure 4: Aligning all the junctions from CRAC, GSNAP, MapSplice, TopHat to human ESTs
using BlastN. Hits with E-values ≤ 10−15 are considered as good quality hits whereas hits with
E-values ≥ 10−10 or junctions that were not aligned are considered as bad quality or no hit.
Figures are provided first with absolute numbers (number of distinct junctions) and then as a
percentage of the total number of distinct junctions.

by CRAC (149,872) and TopHat (126,143). CRAC is characterised by a low proportion of bad
quality hits (6.8 %) versus 14 % for GSNAP, 13 % for MapSplice and 12 % for TopHat.

2.4 Investigating new junctions unmapped by CRAC
To understand why CRAC had its worst performances with the new junctions, we analyse a
random sample drawn from the junctions predicted by the three other tools together. Twenty-one
junctions are sampled out of 2,642, and the corresponding read where they appear are considered
for a manual analysis. Of these junctions, nineteen are weakly expressed alternative transcripts.
Meaning that these specific junctions are rare but the involved exons also participate in other
junctions, that are much more expressed. Therefore CRAC identifies a variation in the support
profile (the exons are well expressed, but the junction is poorly expressed) and considers that it
may consist of a sequencing error. However CRAC is aware that this kind of error is unusual
for a sequencing error. That is why CRAC classifies sixteen of these cases as an “undetermined
error” and gives more clue by stating that it is probably a splicing event (the positions of the
event are also given).

2.5 Testing junction prediction on negative controls.
We report in the Results section of the MS, the output of CRAC on a set of negative controls
splice junctions obtained by associating true RefSeq exons. The command line used for running
CRAC is:

crac -i GRCh37 -r random-refseq-junction-reads-100k.fa -k 22 -m 76
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--splice random-refseq-junction-reads-100k-GRCh37-22.splice
--nb-threads 2 -n 15 --max-splice-length 300000 --max-duplication 5
--min-percent-duplication-loc 0.5 --min-loc-repetition 2

The collection of reads used as negative controls is available at: http://crac.gforge.inria.
fr/

3 Predicting chimeric RNAs on four breast cancer libraries.

3.1 Parameters for CRAC
To test CRAC on real data regarding the identification of chimeric RNA (chRNA), we compared
its results to the findings of Edgren et al. [1] and of TopHat-fusion on four breast cancer RNA-seq
libraries. These were published in Edgren [1] and also analysed in TopHat-fusion [2]. Contrarily
to the other data we used, either simulated or real, these RNA-seq libraries contain shorter reads:
50 nt. Hence, we needed to adapt CRAC’s parameters to take this shorther length into account.
We alter two parameters:

• the number of adjacent k-mers that must consistently indicate the same unique location in a
read was decreased from 15% to 10% of the read length, that is from 7 to 5 (-min-percent-single-loc
0.10)

• the number of k-mers adjacent to each side of the break border whose location is checked
for concordance was lowered to 2 instead of 10 (-max-extension-length 2). This pa-
rameter is used during the break fusion procedure to determine whether we face a colinear
(i.e., normal) rather than a chimeric splice junction.

We used k = 22, as for the other analyses to avoid an increase in false locations; all other param-
eters were left by default or as for the other analyzes (see Table 4 of Additional File 2).

We used stringent criteria for predicting chRNA, which is done by setting the following
parameters:

chimera_break >= k-1-(5)
min_support_in_chimera >= 2
max_extension_for_find_single_loc =5 for each border break

3.2 Filtering for normal splice junctions with GSNAP
We filtered the chRNA predicted by both CRAC and TopHat-fusion using GSNAP to avoid those
that could have a continuous or colinear splice alignment with slightly less identities. Such an
alignment represents an alternative to the detected chimeric alignment. Thus, we consider such
candidates to be less robust. For this filtering, we set the parameters that enable GSNAP to detect
splice junctions in individual reads, i.e. the --novelsplicing (or -N) flag. All other options
were set to default.
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3.3 Rerunning TopHat-fusion
In the article, we report several recurrent chRNAs detected by CRAC but not found by TopHat-
fusion. We sought to understand the reasons of this difference, especially if TopHat-fusion de-
tects these chimeric junctions based on alignment criteria, but then filter them out based on
biological knowledge. As TopHat-fusion reports first the set of reads that generates the initial
hits (in file accepted_hits.sam) before its internal filtration step, it is possible to answer this
question. For this sake, we ran TopHat-fusion on the four libraries as described in their article
[2], and searched all detected chRNAs in its intermediate file.

Parameters of TopHat-fusion: --fusion-anchor-length 20

3.4 Running times for the breast cancer libraries
Table 7 gives the running times of CRAC and TopHat-fusion to analyze each of the four breast
cancer libraries of 50 nt reads. CRAC is between 5 and 10 times faster than TopHat-fusion.

Breast cancer libraries [1] BT-474 KPL-4 MCF-7 SK-BR-3
CRAC 1h50m 41m 54m 1h05m
TopHat-fusion 11h58m 3h28m 4h22m 11h12m

Table 7: CPU time for CRAC and TopHat-fusion to process with 4 threads the Breast cancer
libraries BT-474, KPL-4, MCF-7 and SK-BR-3 from [1].

3.5 Distribution of candidate chimeric RNA found by CRAC
CRAC predicted 455 candidate chRNAs that are partitioned in five classes, as explained in Sec-
tion 6 of Additional File 2. Class 2 candidates represent only two percents of the total, thereby
showing that, although arbitrary, the threshold used to distinguish between splice inside one gene
or across distinct genes, works reasonably for Human data. Annotations show that some of these
cases are indeed normal splice junctions inside a known gene.

Class Nb Total Proportion
1 118 455 0.26
2 10 455 0.02
3 109 455 0.24
4 127 455 0.28
5 91 455 0.20

3.6 Case candidate "chimeric" RNA with internal repeat located inside
LONP1 gene

This candidate chRNA is identified in class 5: it appears as an inversion because of an internal
repeat. We use the term "chimeric" simply because such reads cannot be explained with sim-
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ple colinear alignments. It means "non colinear" and makes no assumption about underlying
mechanisms.

Figure 5 shows the analysis of one of the reads that gave rise to this prediction. Neither can
it be mapped continuously on the genome, nor did GSNAP find a continuous alignment for it.
Instead, it is mapped as a chimeric read with a small scale inversion on chromosome 19 minus
strand in two parts depicted in blue and yellow. The k-mer location profile exhibited a break
after the blue part, and the first located k-mer after the break is at the start of the yellow part.
The blue part ends at position 5,692,012, while the yellow part starts at position 5,691,992, i.e.
slightly before. Hence, CRAC classifies it as a chimera with inversion. Both parts overlap on the
chromosome 19, which implies that the read contains a sequence repeated twice TCA . . .AGA
(shown in boldface below). This chimeric alignment is confirmed by BLAT (below), which finds
exactly the same junction point.

This duplication could be due to a known variant. We thus searched for possible known
variants in this chromosomal region in eight distinct Human genomes on Ensembl, but find none
[3]. However, we observed this chimeric junction, but also found the same junction without the
duplication in other libraries. Both variants are found in public EST libraries in equal proportion
and at non negligible expression levels. Moreover, we found the variant with duplication also
in five private (healthy and tumoral) libraries, but neither in ERR030856, nor in a K562, while
the variant without duplication is present in three private libraries and in K562. These evidences
raise the possibility that this LONP1 unannotated junction may not just be due to transcriptomic
noise, may be regulated, and thus functional. It is striking that such a type of read (class 5)
is found in high proportion among the chimeric RNA candidates, suggesting that this LONP1
variant is not an isolated case. Larger investigations over more libraries are needed to confirm or
infirm our assumptions.
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Recurrent candidate chimeric RNA in LONP1 gene 

 
 
GENOME chr 19 brin -1: 5' towards 3' 
Positions: 5,691,988 – 5,692,012 in blue, and 5,691,992 – 5,692,016 in yellow 

Read: TCAGGCCCTGTCTGGGCCAGAACTGGATGTCAGGCCCTGTCTGGGCCAGA 

repeat sequence inside the read shown in bold 
Genomic locations identified by CRAC: black arrows 
 

 
                                      
  
 
 
 
 
 
 

   
 
 
 
 
 
 
 
 
  5692017 gatgtcaggccctgtctgggccaga        5691992 
  5692012     tcaggccctgtctgggccagaactg   5691992 
 

Chr 19 strand -1 

read 

5,691,992 

5,692,012 

BLAT alignment in two pieces

5’end

TCAGGCCCTGTCTGGGCCAGAACTGGATGTCAGGCCCTGTCTGGGCCAGA

1    25    25 100.0%    19   -    5691988   5692012     25

acactaccgg gagatcttcg acatcgcctt cccggacgag caggcagagg  5692063

cgctggccgt ggaacggtga cggccacccc gggactgcag gcggcggatg  5692013

TCAGGCCCTG TCTGGGCCAG AACTGagcgc tgtggggagc gcgcccggac  5691963

ctggcagtgg agccaccgag cgagcagctc ggtccagtga cccagatccc  5691913

agggacctca gtcggcttaa tcaga

3’end

TCAGGCCCTGTCTGGGCCAGAACTGGATG  TCAGGCCCTGTCTGGGCCAGA  

1    25    25 100.0%    19   -    5691992   5692016     25

tggaacacta ccgggagatc ttcgacatcg ccttcccgga cgagcaggca  5692067

gaggcgctgg ccgtggaacg gtgacggcca ccccgggact gcaggcggcg  5692017

G  ATGTCAGGC     CCTGTCTGGG     CCAG  A  actga gcgctgtggg gagcgcgccc  5691967

ggacctggca gtggagccac cgagcgagca gctcggtcca gtgacccaga  5691917

tcccagggac ctcagtcggc ttaat

Figure 5: A candidate chimeric RNA involving LONP1 exons.
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